Regular homotopy for immersions of graphs into surfaces
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 854-872 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study invariants of regular immersions of graphs into surfaces up to regular homotopy. The concept of the winding number is used to introduce a new simple combinatorial invariant of regular homotopy. Bibliography: 20 titles.
Keywords: winding number, immersion, graph
Mots-clés : surface.
@article{SM_2016_207_6_a4,
     author = {D. A. Permyakov},
     title = {Regular homotopy for immersions of graphs into surfaces},
     journal = {Sbornik. Mathematics},
     pages = {854--872},
     year = {2016},
     volume = {207},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/}
}
TY  - JOUR
AU  - D. A. Permyakov
TI  - Regular homotopy for immersions of graphs into surfaces
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 854
EP  - 872
VL  - 207
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/
LA  - en
ID  - SM_2016_207_6_a4
ER  - 
%0 Journal Article
%A D. A. Permyakov
%T Regular homotopy for immersions of graphs into surfaces
%J Sbornik. Mathematics
%D 2016
%P 854-872
%V 207
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/
%G en
%F SM_2016_207_6_a4
D. A. Permyakov. Regular homotopy for immersions of graphs into surfaces. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 854-872. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/

[1] H. Whitney, “On regular closed curves in the plane”, Compositio Math., 4 (1937), 276–284 | MR | Zbl

[2] A. A. Oshemkov, F. Yu. Popelenskii, A. A. Tuzhilin, A. T. Fomenko, A. I. Shafarevich, Kurs naglyadnoi geometrii i topologii, Klassicheskii uchebnik MGU, Lenand, M., 2015, 360 pp.

[3] S. Smale, “Regular curves on Riemmannian manifolds”, Trans. Amer. Math. Soc., 87:2 (1958), 492–512 | DOI | MR | Zbl

[4] B. L. Reinhart, “The winding number on two manifolds”, Ann. Inst. Fourier (Grenoble), 10 (1960), 271–283 | DOI | MR | Zbl

[5] B. L. Reinhart, “Further remarks on the winding number”, Ann. Inst. Fourier (Grenoble), 13:1 (1963), 155–160 | DOI | MR | Zbl

[6] D. R. J. Chillingworth, “Winding numbers on surfaces. I”, Math. Ann., 196:3 (1972), 218–249 | DOI | MR | Zbl

[7] M. McIntyre, G. Cairns, “A new formula for winding number”, Geom. Dedicata, 46:2 (1993), 149–159 | DOI | MR | Zbl

[8] Y. Burman, M. Polyak, “Whitney's formulas for curves on surfaces”, Geom. Dedicata, 151 (2011), 97–106 | DOI | MR | Zbl

[9] A. T. Fomenko, S. V. Matveev, Algorithmic and computer methods for three-manifolds, Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | DOI | MR | MR | Zbl | Zbl

[10] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, 2-e izd., pererab. i dop., Nauka, M., 1998, 304 pp. | Zbl

[11] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[12] A. T. Fomenko, Topologicheskie variatsionnye zadachi, Izd-vo MGU, M., 1984, 216 pp. | MR | Zbl

[13] R. Nikkuni, “On the Wu invariants for immersions of a graph into the plane”, Homology, Homotopy Appl., 12 (2010), 45–60 | DOI | MR | Zbl

[14] D. A. Permyakov, “Classification of immersions of graphs into a plane”, Mosc. Univ. Math. Bull., 63:5 (2008), 208–210 | DOI | Zbl

[15] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[16] D. R. J. Chillingworth, “Winding numbers on surfaces. II”, Math. Ann., 199:3 (1972), 131–153 | DOI | MR | Zbl

[17] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989, 496 pp. | MR | Zbl

[18] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Klassicheskii uchebnik MGU, 2-e izd., Lenand, M., 2014, 512 pp.

[19] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin–New York, 1977, xiv+339 pp. | MR | Zbl

[20] R. Skora, “The degree of a map between surfaces”, Math. Ann., 276:3 (1987), 415–423 | DOI | MR | Zbl