Regular homotopy for immersions of graphs into surfaces
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 854-872

Voir la notice de l'article provenant de la source Math-Net.Ru

We study invariants of regular immersions of graphs into surfaces up to regular homotopy. The concept of the winding number is used to introduce a new simple combinatorial invariant of regular homotopy. Bibliography: 20 titles.
Keywords: winding number, immersion, graph
Mots-clés : surface.
@article{SM_2016_207_6_a4,
     author = {D. A. Permyakov},
     title = {Regular homotopy for immersions of graphs into surfaces},
     journal = {Sbornik. Mathematics},
     pages = {854--872},
     publisher = {mathdoc},
     volume = {207},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/}
}
TY  - JOUR
AU  - D. A. Permyakov
TI  - Regular homotopy for immersions of graphs into surfaces
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 854
EP  - 872
VL  - 207
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/
LA  - en
ID  - SM_2016_207_6_a4
ER  - 
%0 Journal Article
%A D. A. Permyakov
%T Regular homotopy for immersions of graphs into surfaces
%J Sbornik. Mathematics
%D 2016
%P 854-872
%V 207
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/
%G en
%F SM_2016_207_6_a4
D. A. Permyakov. Regular homotopy for immersions of graphs into surfaces. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 854-872. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a4/