A version of the infinite-dimensional Borsuk-Ulam theorem for multivalued maps
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 841-853 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the proof of the infinite-dimensional Borsuk-Ulam theorem for odd completely continuous multivalued maps with convex images which are defined on level sets of even functions. The results obtained in the paper are new even for single-valued maps. In the final section some applications of the theorem to analysis and differential equations are discussed. Bibliography: 12 titles.
Keywords: multivalued map, Borsuk-Ulam theorem, surjective operator, level set of a function, topological dimension.
@article{SM_2016_207_6_a3,
     author = {B. D. Gel'man},
     title = {A~version of the infinite-dimensional {Borsuk-Ulam} theorem for multivalued maps},
     journal = {Sbornik. Mathematics},
     pages = {841--853},
     year = {2016},
     volume = {207},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a3/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - A version of the infinite-dimensional Borsuk-Ulam theorem for multivalued maps
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 841
EP  - 853
VL  - 207
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_6_a3/
LA  - en
ID  - SM_2016_207_6_a3
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T A version of the infinite-dimensional Borsuk-Ulam theorem for multivalued maps
%J Sbornik. Mathematics
%D 2016
%P 841-853
%V 207
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2016_207_6_a3/
%G en
%F SM_2016_207_6_a3
B. D. Gel'man. A version of the infinite-dimensional Borsuk-Ulam theorem for multivalued maps. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 841-853. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a3/

[1] J. Dugundji, A. Granas, Fixed point theory, v. I, Monogr. Mat., 61, PWN, Warszawa, 1982, 209 pp. | MR | Zbl

[2] H. Steinlein, “Borsuk's antipodal theorerem and its generalizations and applications: a survey”, Topological methods in nonlinear analysis, Sém. Math. Sup., 95, Presses Univ. Montréal, Montreal, QC, 1985, 166–235 | MR | Zbl

[3] B. D. Gel'man, “Borsuk–Ulam theorem in infinite-dimensional Banach spaces”, Sb. Math., 193:1 (2002), 83–91 | DOI | DOI | MR | Zbl

[4] B. D. Gel'man, “An infinite-dimensional version of the Borsuk–Ulam theorem”, Funct. Anal. Appl., 38:4 (2004), 239–242 | DOI | DOI | MR | Zbl

[5] B. D. Gelman, N. M. Zhuk, “O beskonechnomernoi versii teoremy Borsuka–Ulama dlya mnogoznachnykh otobrazhenii”, Vestn. VGU. Ser.: Fiz. Matem., 2011, no. 2, 78–84 | Zbl

[6] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Izd. 2-e, ispr. i dop., Librokom, M., 2011, 224 pp. | MR | Zbl

[7] B. D. Gel'man, “Continuous approximations of multivalued mappings and fixed points”, Math. Notes, 78:2 (2005), 194–203 | DOI | DOI | MR | Zbl

[8] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973, 575 pp. | MR | Zbl

[9] B. D. Gel'man, “Topological properties of the set of fixed points of a multivalued map”, Sb. Math., 188:12 (1997), 1761–1782 | DOI | DOI | MR | Zbl

[10] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York–London, 1972, xiii+459 pp. | MR | MR | Zbl | Zbl

[11] M. Izydorek, “The Bourgin–Yang theorem for multi-valued maps in the nonsymmetric case”, Zeszyty Nauk. Wydz. Mat. Fiz. Chem., Mat. Gdańsk, 1987, no. 6, 37–41 | Zbl

[12] A. K. Prykarpats'kyi, “An infinite-dimensional Borsuk–Ulam-type generalization of the Leray–Schauder fixed-point theorem and some applications”, Ukr. matem. zhurn., 60:1 (2008), 100–106 | MR | Zbl