@article{SM_2016_207_6_a3,
author = {B. D. Gel'man},
title = {A~version of the infinite-dimensional {Borsuk-Ulam} theorem for multivalued maps},
journal = {Sbornik. Mathematics},
pages = {841--853},
year = {2016},
volume = {207},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a3/}
}
B. D. Gel'man. A version of the infinite-dimensional Borsuk-Ulam theorem for multivalued maps. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 841-853. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a3/
[1] J. Dugundji, A. Granas, Fixed point theory, v. I, Monogr. Mat., 61, PWN, Warszawa, 1982, 209 pp. | MR | Zbl
[2] H. Steinlein, “Borsuk's antipodal theorerem and its generalizations and applications: a survey”, Topological methods in nonlinear analysis, Sém. Math. Sup., 95, Presses Univ. Montréal, Montreal, QC, 1985, 166–235 | MR | Zbl
[3] B. D. Gel'man, “Borsuk–Ulam theorem in infinite-dimensional Banach spaces”, Sb. Math., 193:1 (2002), 83–91 | DOI | DOI | MR | Zbl
[4] B. D. Gel'man, “An infinite-dimensional version of the Borsuk–Ulam theorem”, Funct. Anal. Appl., 38:4 (2004), 239–242 | DOI | DOI | MR | Zbl
[5] B. D. Gelman, N. M. Zhuk, “O beskonechnomernoi versii teoremy Borsuka–Ulama dlya mnogoznachnykh otobrazhenii”, Vestn. VGU. Ser.: Fiz. Matem., 2011, no. 2, 78–84 | Zbl
[6] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Izd. 2-e, ispr. i dop., Librokom, M., 2011, 224 pp. | MR | Zbl
[7] B. D. Gel'man, “Continuous approximations of multivalued mappings and fixed points”, Math. Notes, 78:2 (2005), 194–203 | DOI | DOI | MR | Zbl
[8] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Nauka, M., 1973, 575 pp. | MR | Zbl
[9] B. D. Gel'man, “Topological properties of the set of fixed points of a multivalued map”, Sb. Math., 188:12 (1997), 1761–1782 | DOI | DOI | MR | Zbl
[10] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York–London, 1972, xiii+459 pp. | MR | MR | Zbl | Zbl
[11] M. Izydorek, “The Bourgin–Yang theorem for multi-valued maps in the nonsymmetric case”, Zeszyty Nauk. Wydz. Mat. Fiz. Chem., Mat. Gdańsk, 1987, no. 6, 37–41 | Zbl
[12] A. K. Prykarpats'kyi, “An infinite-dimensional Borsuk–Ulam-type generalization of the Leray–Schauder fixed-point theorem and some applications”, Ukr. matem. zhurn., 60:1 (2008), 100–106 | MR | Zbl