On the Frobenius problem for three arguments
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 816-840 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic formulae for the mean values of various characteristics of the additive semigroup generated by three positive integers are obtained theoretically, the first of which is a formula for the number of integers not belonging to this semigroup. A numerical experiment is described which validates the results obtained. Bibliography: 21 titles.
Keywords: continued fractions, Frobenius numbers, Kloostermann sums, double-circuit networks.
@article{SM_2016_207_6_a2,
     author = {I. S. Vorob'ev},
     title = {On the {Frobenius} problem for three arguments},
     journal = {Sbornik. Mathematics},
     pages = {816--840},
     year = {2016},
     volume = {207},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/}
}
TY  - JOUR
AU  - I. S. Vorob'ev
TI  - On the Frobenius problem for three arguments
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 816
EP  - 840
VL  - 207
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/
LA  - en
ID  - SM_2016_207_6_a2
ER  - 
%0 Journal Article
%A I. S. Vorob'ev
%T On the Frobenius problem for three arguments
%J Sbornik. Mathematics
%D 2016
%P 816-840
%V 207
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/
%G en
%F SM_2016_207_6_a2
I. S. Vorob'ev. On the Frobenius problem for three arguments. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 816-840. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/

[1] V. I. Arnold, Arnold's problems, 2nd ed., Springer-Verlag, Berlin–Heidelberg; Phasis, 2005, xvi+639 pp. | DOI | MR | MR | Zbl | Zbl

[2] J. L. Ramírez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005, xvi+243 pp. | DOI | MR | Zbl

[3] J. L. Davison, “On the linear Diophantine problem of Frobenius”, J. Number Theory, 48:3 (1994), 353–363 | DOI | MR | Zbl

[4] J. Bourgain, Ya. G. Sinai, “Limit behaviour of large Frobenius numbers”, Russian Math. Surveys, 62:4 (2007), 713–725 | DOI | DOI | MR | Zbl

[5] V. Shchur, Ya. Sinai, A. Ustinov, “Limiting distribution of Frobenius numbers for $n=3$”, J. Number Theory, 129:11 (2009), 2778–2789 | DOI | MR | Zbl

[6] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Invent. Math., 181:1 (2010), 179–207 | DOI | MR | Zbl

[7] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | DOI | MR | Zbl

[8] A. V. Ustinov, “On the distribution of Frobenius numbers with three arguments”, Izv. Math., 74:5 (2010), 1023–1049 | DOI | DOI | MR | Zbl

[9] D. A. Frolenkov, “The mean value of Frobenius numbers with three arguments”, Izv. Math., 76:4 (2012), 760–819 | DOI | DOI | MR | Zbl

[10] I. Aliev, M. Henk, A. Hinrichs, “Expected Frobenius numbers”, J. Combin. Theory Ser. A, 118:2 (2011), 525–531 | DOI | MR | Zbl

[11] A. Strömbergsson, “On the limit distribution of Frobenius numbers”, Acta Arith., 152:1 (2012), 81–107 | DOI | MR | Zbl

[12] Ö. J. Rödseth, “On a linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 1978:301 (1978), 171–178 | DOI | MR | Zbl

[13] A. V. Ustinov, “Geometric proof of Rødseth's formula for Frobenius numbers”, Proc. Steklov Inst. Math., 276 (2012), 275–282 | DOI | MR | Zbl

[14] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math, 12 (1960), 390–398 | DOI | MR | Zbl

[15] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley, Reading, MA, 1994, xiv+657 pp. | MR | Zbl

[16] V. A. Bykovskii, “Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$”, J. Soviet Math., 25:2 (1984), 975–988 | DOI | MR | Zbl

[17] A. V. Ustinov, “On the number of solutions of the congruence $xy \equiv l \pmod q$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20:5 (2009), 813–836 | DOI | MR | Zbl

[18] C. K. Wong, D. Coppersmith, “A combinatorial problem related to multimodule memory organizations”, J. Assoc. Comput. Mach., 21:3 (1974), 392–402 | DOI | MR | Zbl

[19] V. I. Arnold, “Geometry of continued fractions associated with Frobenius numbers”, Funct. Anal. Other Math., 2:2-4 (2009), 129–138 | DOI | MR | Zbl

[20] E. S. Selmer, “On the linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 1977:293/294 (1977), 1–17 | DOI | MR | Zbl

[21] I. S. Vorobev, “Eksperimentalnoe issledovanie problemy Frobeniusa dlya trekh argumentov”, Dalnevost. matem. zhurn., 11:1 (2011), 3–9 | Zbl