On the Frobenius problem for three arguments
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 816-840

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic formulae for the mean values of various characteristics of the additive semigroup generated by three positive integers are obtained theoretically, the first of which is a formula for the number of integers not belonging to this semigroup. A numerical experiment is described which validates the results obtained. Bibliography: 21 titles.
Keywords: continued fractions, Frobenius numbers, Kloostermann sums, double-circuit networks.
@article{SM_2016_207_6_a2,
     author = {I. S. Vorob'ev},
     title = {On the {Frobenius} problem for three arguments},
     journal = {Sbornik. Mathematics},
     pages = {816--840},
     publisher = {mathdoc},
     volume = {207},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/}
}
TY  - JOUR
AU  - I. S. Vorob'ev
TI  - On the Frobenius problem for three arguments
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 816
EP  - 840
VL  - 207
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/
LA  - en
ID  - SM_2016_207_6_a2
ER  - 
%0 Journal Article
%A I. S. Vorob'ev
%T On the Frobenius problem for three arguments
%J Sbornik. Mathematics
%D 2016
%P 816-840
%V 207
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/
%G en
%F SM_2016_207_6_a2
I. S. Vorob'ev. On the Frobenius problem for three arguments. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 816-840. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/