@article{SM_2016_207_6_a2,
author = {I. S. Vorob'ev},
title = {On the {Frobenius} problem for three arguments},
journal = {Sbornik. Mathematics},
pages = {816--840},
year = {2016},
volume = {207},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/}
}
I. S. Vorob'ev. On the Frobenius problem for three arguments. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 816-840. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a2/
[1] V. I. Arnold, Arnold's problems, 2nd ed., Springer-Verlag, Berlin–Heidelberg; Phasis, 2005, xvi+639 pp. | DOI | MR | MR | Zbl | Zbl
[2] J. L. Ramírez Alfonsin, The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl., 30, Oxford Univ. Press, Oxford, 2005, xvi+243 pp. | DOI | MR | Zbl
[3] J. L. Davison, “On the linear Diophantine problem of Frobenius”, J. Number Theory, 48:3 (1994), 353–363 | DOI | MR | Zbl
[4] J. Bourgain, Ya. G. Sinai, “Limit behaviour of large Frobenius numbers”, Russian Math. Surveys, 62:4 (2007), 713–725 | DOI | DOI | MR | Zbl
[5] V. Shchur, Ya. Sinai, A. Ustinov, “Limiting distribution of Frobenius numbers for $n=3$”, J. Number Theory, 129:11 (2009), 2778–2789 | DOI | MR | Zbl
[6] J. Marklof, “The asymptotic distribution of Frobenius numbers”, Invent. Math., 181:1 (2010), 179–207 | DOI | MR | Zbl
[7] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | DOI | MR | Zbl
[8] A. V. Ustinov, “On the distribution of Frobenius numbers with three arguments”, Izv. Math., 74:5 (2010), 1023–1049 | DOI | DOI | MR | Zbl
[9] D. A. Frolenkov, “The mean value of Frobenius numbers with three arguments”, Izv. Math., 76:4 (2012), 760–819 | DOI | DOI | MR | Zbl
[10] I. Aliev, M. Henk, A. Hinrichs, “Expected Frobenius numbers”, J. Combin. Theory Ser. A, 118:2 (2011), 525–531 | DOI | MR | Zbl
[11] A. Strömbergsson, “On the limit distribution of Frobenius numbers”, Acta Arith., 152:1 (2012), 81–107 | DOI | MR | Zbl
[12] Ö. J. Rödseth, “On a linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 1978:301 (1978), 171–178 | DOI | MR | Zbl
[13] A. V. Ustinov, “Geometric proof of Rødseth's formula for Frobenius numbers”, Proc. Steklov Inst. Math., 276 (2012), 275–282 | DOI | MR | Zbl
[14] S. M. Johnson, “A linear diophantine problem”, Canad. J. Math, 12 (1960), 390–398 | DOI | MR | Zbl
[15] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley, Reading, MA, 1994, xiv+657 pp. | MR | Zbl
[16] V. A. Bykovskii, “Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$”, J. Soviet Math., 25:2 (1984), 975–988 | DOI | MR | Zbl
[17] A. V. Ustinov, “On the number of solutions of the congruence $xy \equiv l \pmod q$ under the graph of a twice continuously differentiable function”, St. Petersburg Math. J., 20:5 (2009), 813–836 | DOI | MR | Zbl
[18] C. K. Wong, D. Coppersmith, “A combinatorial problem related to multimodule memory organizations”, J. Assoc. Comput. Mach., 21:3 (1974), 392–402 | DOI | MR | Zbl
[19] V. I. Arnold, “Geometry of continued fractions associated with Frobenius numbers”, Funct. Anal. Other Math., 2:2-4 (2009), 129–138 | DOI | MR | Zbl
[20] E. S. Selmer, “On the linear Diophantine problem of Frobenius”, J. Reine Angew. Math., 1977:293/294 (1977), 1–17 | DOI | MR | Zbl
[21] I. S. Vorobev, “Eksperimentalnoe issledovanie problemy Frobeniusa dlya trekh argumentov”, Dalnevost. matem. zhurn., 11:1 (2011), 3–9 | Zbl