On complements of coradicals of finite groups
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 792-815 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak F$ be an $\omega$-local Fitting formation, and $G$ a finite group that can be represented in the form of a product of $n$ subnormal subgroups whose $\mathfrak F$-coradicals are $\omega$-soluble, and whose Sylow $p$-subgroups are abelian for any $p\in\omega$. It is established that there exist $\omega$-complements of the $\mathfrak F$-coradical of $G$. New theorems on the existence of complements of coradicals of a group are obtained as corollaries. For an $\omega$-local formation $\mathfrak F$, conditions are established for the existence of complements and $\omega$-complements of the $\mathfrak F$-coradical of a group in any of its extensions. Bibliography: 21 titles.
Keywords: finite group, Fitting class, $\omega$-local formation, coradical of a group, $\omega$-complement of a subgroup.
@article{SM_2016_207_6_a1,
     author = {V. A. Vedernikov and M. M. Sorokina},
     title = {On complements of coradicals of finite groups},
     journal = {Sbornik. Mathematics},
     pages = {792--815},
     year = {2016},
     volume = {207},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a1/}
}
TY  - JOUR
AU  - V. A. Vedernikov
AU  - M. M. Sorokina
TI  - On complements of coradicals of finite groups
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 792
EP  - 815
VL  - 207
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_6_a1/
LA  - en
ID  - SM_2016_207_6_a1
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%A M. M. Sorokina
%T On complements of coradicals of finite groups
%J Sbornik. Mathematics
%D 2016
%P 792-815
%V 207
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2016_207_6_a1/
%G en
%F SM_2016_207_6_a1
V. A. Vedernikov; M. M. Sorokina. On complements of coradicals of finite groups. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 792-815. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a1/

[1] P. Hall, “The construction of soluble groups”, J. Reine Angew. Math., 182 (1940), 206–214 | DOI | MR | Zbl

[2] B. Huppert, “Subnormale Untergruppen und $p$-Sylowgruppen”, Acta Sci. Math. Szeged, 22 (1961), 46–61 | MR | Zbl

[3] W. Gaschütz, “Zur Erweiterungstheorie der endlichen Gruppen”, J. Reine Angew. Math., 190 (1952), 93–107 | DOI | MR | Zbl

[4] H. Wielandt, “Vertauschbare nachinvariante Untergruppen”, Abh. Math. Sem. Univ. Hamburg, 21 (1957), 55–62 | DOI | MR | Zbl

[5] S. F. Kamornikov, “O dopolneniyakh koradikala konechnoi gruppy”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 2013, no. 6(81), 17–23 | Zbl

[6] L. A. Shemetkov, “Graduated formations of groups”, Math. USSR-Sb., 23:4 (1974), 593–611 | DOI | MR | Zbl

[7] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 271 pp. | MR | Zbl

[8] S. A. Chunikhin, Subgroups of finite groups, Wolters-Noordhoff Publ., Groningen, 1969, 142 pp. | MR | MR | Zbl | Zbl

[9] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin–New York, 1967, xii+793 pp. | DOI | MR | Zbl

[10] K. Doerk, T. O. Hawkes, Finite soluble groups, de Gruyter Exp. Math., 4, de Gruyter, Berlin, 1992, xiv+891 pp. | DOI | MR | Zbl

[11] Wenbin Guo, The theory of classes of groups, transl. from the 1997 Chinese original, Math. Appl., 505, Kluwer Acad. Publ., Dordrecht; Science Press, Beijing, 2000, xii+258 pp. | MR | Zbl

[12] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[13] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 255 pp. | MR | Zbl

[14] A. N. Skiba, L. A. Shemetkov, “Multiply $\omega$-local formations and Fitting classes of finite groups”, Siberian Adv. Math., 10:2 (2000), 112–141 | MR | Zbl

[15] A. N. Skiba, L. A. Shemetkov, “Chastichno kompozitsionnye formatsii konechnykh grupp”, Dokl. NAN Belarusi, 43:4 (1999), 5–8 | MR | Zbl

[16] V. A. Vedernikov, M. M. Sorokina, “$\omega$-fibered formations and Fitting classes of finite groups”, Math. Notes, 71:1 (2002), 39–55 | DOI | DOI | MR | Zbl

[17] V. A. Vedernikov, M. M. Sorokina, “$\Omega$-foliated formations and Fitting classes of finite groups”, Discrete Math. Appl., 11:5 (2001), 507–527 | DOI | DOI | MR | Zbl

[18] V. A. Vedernikov, “Maximal satellites of $\Omega$-foliated formations and Fitting classes”, Proc. Steklov Inst. Math. (Suppl.), suppl. 2 (2001), S217–S233 | MR | Zbl

[19] V. A. Vedernikov, “O novykh tipakh $\omega$-veernykh formatsii konechnykh grupp”, Ukrainskii matematichnyi kongress – 2001. Algebra i teoriya chisel. Sektsiya 1. Pratsi (Kiiv, 2002), In-t matem. NAN Ukrainy, Kiiv, 2002, 36–45 | MR | Zbl

[20] S. F. Kamornikov, “On properties of formations of quasinilpotent groups”, Math. Notes, 53:2 (1993), 163–166 | DOI | MR | Zbl

[21] M. A. Korpacheva, M. M. Sorokina, “The critical $\omega$-foliated $\tau$-closed formations of finite groups”, Discrete Math. Appl., 21:1 (2011), 69–77 | DOI | DOI | MR | Zbl