Mots-clés : Padé polynomials, Hermite-Padé polynomials
@article{SM_2016_207_6_a0,
author = {A. V. Astafieva and A. P. Starovoitov},
title = {Hermite-Pad\'e approximation of exponential functions},
journal = {Sbornik. Mathematics},
pages = {769--791},
year = {2016},
volume = {207},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a0/}
}
A. V. Astafieva; A. P. Starovoitov. Hermite-Padé approximation of exponential functions. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 769-791. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a0/
[1] J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Padé method”, J. Comput. Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl
[2] B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky, “How well does the Hermite–Padé approximation smooth the Gibbs phenomenon?”, Math. Comp., 80:274 (2011), 931–958 | DOI | MR | Zbl
[3] V. N. Sorokin, “Cyclic graphs and Apéry's theorem”, Russian Math. Surveys, 57:3 (2002), 535–571 | DOI | DOI | MR | Zbl
[4] S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series”, Russian Math. Surveys, 57:1 (2002), 43–141 | DOI | DOI | MR | Zbl
[5] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951 | DOI | DOI | MR
[6] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 2004:3 (2004), 109–129 | DOI | MR | Zbl
[7] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[8] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | DOI | MR | Zbl
[9] V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 199–216 | DOI | MR | Zbl
[10] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[11] G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, The Riemann problem, complete integrability and arithmetic applications (Bures-sur-Yvette/New York, 1979/1980), Lecture Notes in Math., 925, Springer-Verlag, Berlin–New York, 1982, 299–322 | DOI | MR | Zbl
[12] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcedence”, Continued fractions: from analytic number theory to constructive approximation (Columbia, MO, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | DOI | MR | Zbl
[13] K. Mahler, “Applications of some formulae by Hermite to the approximation of exponentials and logarithms”, Math. Ann., 168 (1967), 200–227 | DOI | MR | Zbl
[14] Rational approximants for the Euler constant and recurrence relations, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S138–S190 | DOI | DOI | Zbl
[15] A. I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Padé polynomials”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer-Verlag, New York, 1992, 127–167 | DOI | MR | Zbl
[16] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl
[17] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl
[18] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electron. Trans. Numer. Anal., 2002, no. 14, 195–222 | MR | Zbl
[19] G. López Lagomasino, S. Medina Peralta, U. Fidalgo Prieto, “Hermite-Padé approximation for certain systems of meromorphic functions”, Sb. Math., 206:2 (2015), 225–241 | DOI | DOI | MR | Zbl
[20] Ch. Hermite, “Sur la fonction exponentielle”, C. R. Akad. Sci. (Paris), 77 (1873), 18–24, 74–79, 226–233, 285–293 | Zbl
[21] F. Klein, Elementarmathematik vom höheren Standpunkte aus, v. 1, Arithmetik, Algebra, Analysis, 3. Aufl., Springer-Verlag, Berlin, 1924, xii+321 pp. | MR | MR | Zbl | Zbl
[22] A. I. Aptekarev, “Convergence of rational approximations to a set of exponents”, Mosc. Univ. Math. Bull., 36:1 (1981), 81–86 | MR | Zbl
[23] H. Padé, “Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d'introduction à la théorie des fractions continues algébriques”, Ann. Sci. École Norm. Sup. (3), 16 (1899), 395–426 | MR | Zbl
[24] A. P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, PFMT, 2013, no. 1(14), 81–87 | Zbl
[25] A. P. Starovoitov, “O svoistvakh approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, Dokl. NAN Belarusi, 57:1 (2013), 5–10
[26] A. P. Starovoitov, “The asymptotic form of the Hermite–Padé approximations for a system of Mittag-Leffler functions”, Russian Math. (Iz. VUZ), 58:9 (2014), 49–56 | DOI | MR | Zbl
[27] A. B. J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. Comput. Appl. Math., 207:2 (2007), 227–244 | DOI | MR | Zbl
[28] Ch. Hermite, “Sur la généralisation des fractions continues algébriques”, Ann. Mat. Pura Appl. Ser. 2A, 21 (1893), 289–308 | DOI | Zbl
[29] K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus”, I, J. Reine Angew. Math., 166 (1932), 118–136 ; II, 137–150 | DOI | MR | Zbl | DOI | Zbl
[30] K. Mahler, “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR | Zbl
[31] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl
[32] P. B. Borwein, “Quadratic Hermite–Padé approximation to the exponential function”, Constr. Approx., 2:4 (1986), 291–302 | DOI | MR | Zbl
[33] F. Wielonsky, “Asymptotics of diagonal Hermite–Padé approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl
[34] A. P. Starovoitov, “Asimptotika kvadratichnykh approksimatsii Ermita–Pade eksponentsialnykh funktsii”, PFMT, 2014, no. 1(18), 74–80 | Zbl
[35] L. N. Trefethen, “The asymptotic accuracy of rational best approximations to $e^z$ on a disk”, J. Approx. Theory, 40:4 (1984), 380–383 | DOI | MR | Zbl
[36] D. Braess, “On the conjecture of Meinardus on rational approximation of $e^x$. II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl
[37] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, 3-e izd., Nauka, M., 1989, 478 pp. | MR | Zbl
[38] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, RI, 1960, x+398 pp. | MR | MR | Zbl | Zbl
[39] G. Polia, G. Segë, Zadachi i teoremy iz analiza, v. I, 3-e izd., Nauka, M., 1978, 392 pp.; G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. 1, Grundlehren Math. Wiss., 19, 3. bericht. Aufl., Springer-Verlag, Berlin–New York, 1964, xvi+338 pp. ; G. Pólya, G. Szegö, Problems and theorems in analysis, т. 1, Springer Study Edition, Springer-Verlag, New York–Heidelberg–Berlin, 1976, xix+389 с. | MR | Zbl | Zbl
[40] A. B J. Kuijlaars, W. Van Assche, F. Wielonsky, “Quadratic Hermite–Padé approximation to the exponential function: a Riemann–Hilbert approach”, Constr. Approx., 21:3 (2005), 351–412 | DOI | MR | Zbl
[41] G. Szegö, “Über eine Eigenschaft der Exponentialreihe”, Sitzungsber. Berl. Math. Ges., 1924, no. 23, 50–64 | Zbl
[42] E. B. Saff, R. S. Varga, “On the zeros and poles of Padé approximants to $e^z$. II”, Pade and rational approximation. Theory and applications (Univ. South Florida, Tampa, FL, 1976), Academic Press, New York, 1977, 195–213 | DOI | MR | Zbl
[43] A. V. Astafeva, A. P. Starovoitov, “Ekstremalnye svoistva approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Dokl. NAN Belarusi, 58:2 (2014), 32–37