Hermite-Pad\'e approximation of exponential functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 769-791
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is concerned with diagonal Hermite-Padé polynomials of the first kind for the system of exponentials $\{e^{\lambda_jz}\}_{j=0}^k$ with arbitrary distinct complex parameters $\{\lambda_k\}_{j=0}^k$. An asymptotic formula for the remainder term is established and the location of the zeros is described. For real parameters the asymptotics are found and the extremal properties are described. The theorems obtained supplement the well-known results due to Borwein, Wielonsky, Saff, Varga and Stahl.
Bibliography: 43 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
system of exponentials, Padé polynomials, Hermite-Padé polynomials, asymptotic equalities, the Laplace method, the saddle-point method.
                    
                    
                    
                  
                
                
                @article{SM_2016_207_6_a0,
     author = {A. V. Astafieva and A. P. Starovoitov},
     title = {Hermite-Pad\'e approximation of exponential functions},
     journal = {Sbornik. Mathematics},
     pages = {769--791},
     publisher = {mathdoc},
     volume = {207},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a0/}
}
                      
                      
                    A. V. Astafieva; A. P. Starovoitov. Hermite-Pad\'e approximation of exponential functions. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 769-791. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a0/
