Measures of correlations in infinite-dimensional quantum systems
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 724-768 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several important measures of correlations of the state of a finite-dimensional composite quantum system are defined as linear combinations of marginal entropies of this state. This paper is devoted to infinite-dimensional generalizations of such quantities and to an analysis of their properties. We introduce the notion of faithful extension of a linear combination of marginal entropies and consider several concrete examples, the simplest of which are quantum mutual information and quantum conditional entropy. Then we show that quantum conditional mutual information can be defined uniquely as a lower semicontinuous function on the set of all states of a tripartite infinite-dimensional system possessing all the basic properties valid in finite dimensions. Infinite-dimensional generalizations of some other measures of correlations in multipartite quantum systems are also considered. Applications of the results to the theory of infinite-dimensional quantum channels and their capacities are considered. The existence of a Fawzi-Renner recovery channel reproducing marginal states for all tripartite states (including states with infinite marginal entropies) is shown. Bibliography: 47 titles.
Keywords: von Neumann entropy, marginal entropy, quantum mutual information, quantum channel, entanglement-assisted capacity.
@article{SM_2016_207_5_a4,
     author = {M. E. Shirokov},
     title = {Measures of correlations in infinite-dimensional quantum systems},
     journal = {Sbornik. Mathematics},
     pages = {724--768},
     year = {2016},
     volume = {207},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Measures of correlations in infinite-dimensional quantum systems
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 724
EP  - 768
VL  - 207
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/
LA  - en
ID  - SM_2016_207_5_a4
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Measures of correlations in infinite-dimensional quantum systems
%J Sbornik. Mathematics
%D 2016
%P 724-768
%V 207
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/
%G en
%F SM_2016_207_5_a4
M. E. Shirokov. Measures of correlations in infinite-dimensional quantum systems. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 724-768. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/

[1] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | MR | Zbl

[2] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000, xxvi+676 pp. | MR | Zbl

[3] A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR

[4] G. Lindblad, “Entropy, information and quantum measurements”, Comm. Math. Phys., 33:4 (1973), 305–322 | DOI | MR

[5] A. A. Kuznetsova, “Conditional entropy for infinite-dimensional quantum systems”, Theory Probab. Appl., 55:4 (2011), 709–717 | DOI | DOI | MR | Zbl

[6] Jianxin Chen, Zhengfeng Ji, Chi-Kwong Li, Yiu-Tung Poon, Yi Shen, Nengkun Yu, Bei Zeng, Duanlu Zhou, “Discontinuity of maximum entropy inference and quantum phase transitions”, New J. Phys., 17 (2015), 083019, 18 pp. | DOI

[7] L. Rodman, I. M. Spitkovsky, A. Szkola, S. Weis, “Continuity of the maximum-entropy inference: convex geometry and numerical ranges approach”, J. Math. Phys., 57:1 (2016), 015204, 17 pp. ; arXiv: 1502.02018 | DOI | Zbl

[8] S. Weis, A. Knauf, “Entropy distance: new quantum phenomena”, J. Math. Phys., 53:10 (2012), 102206, 25 pp. | DOI | MR | Zbl

[9] O. Fawzi, R. Renner, “Quantum conditional mutual information and approximate Markov chains”, Comm. Math. Phys., 340:2 (2015), 575–611 ; arXiv: 1410.0664 | DOI | MR | Zbl

[10] G. Lindblad, “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[11] E. H. Lieb, M. B. Ruskai, “Proof of the strong suadditivity of quantum mechanical entropy”, J. Mathematical Phys., 14 (1973), 1938–1941 | DOI | MR

[12] M. E. Shirokov, “Squashed entanglement in infinite dimensions”, J. Math. Phys., 57:3 (2016), 032203, 22 pp. ; arXiv: 1507.08964 | DOI | MR

[13] R. Alicki, M. Fannes, “Continuity of quantum conditional information”, J. Phys. A, 37:5 (2004), L55–L57 | DOI | MR | Zbl

[14] A. Winter, “Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints”, Comm. Math. Phys. (to appear) | DOI

[15] K. M. R. Audenaert, “A sharp continuity estimate for the von Neumann entropy”, J. Phys. A, 40:28 (2007), 8127–8136 | DOI | MR | Zbl

[16] Nan Li, Shunlong Luo, “Classical and quantum correlative capacities of quantum systems”, Phys. Rev. A, 84:4 (2011), 042124 | DOI

[17] R. R. Tucci, Entanglement of distillation and conditional mutual information, arXiv: quant-ph/0202144

[18] N. J. Cerf, S. Massar, S. Schneider, “Multipartite classical and quantum secrecy monotones”, Phys. Rev. A, 66:4 (2002), 042309, 13 pp. | DOI

[19] F. Herbut, “On mutual information in multipartite quantum states and equality in strong subadditivity of entropy”, J. Phys. A, 37:10 (2004), 3535–3542 | DOI | MR | Zbl

[20] Dong Yang, K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, Wei Song, “Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof”, IEEE Trans. Inform. Theory, 55:7 (2009), 3375–3387 | DOI | MR

[21] F. Furrer, J. Aberg, R. Renner, “Min- and max-entropy in infinite dimensions”, Comm. Math. Phys., 306:1 (2011), 165–186 | DOI | MR | Zbl

[22] A. S. Holevo, M. E. Shirokov, “On classical capacities of infinite-dimensional quantum channels”, Problems Inform. Transmission, 49:1 (2013), 15–31 | DOI | MR | Zbl

[23] M. Christandl, A. Winter, ““Squashed entanglement”: an additive entanglement measure”, J. Math. Phys., 45:3 (2004), 829–840 | DOI | MR | Zbl

[24] I. Devetak, J. Yard, “Exact cost of redistributing multipartite quantum states”, Phys. Rev. Lett., 100:23 (2008), 230501 | DOI

[25] Lin Zhang, “Conditional mutual information and commutator”, Internat. J. Theoret. Phys., 52:6 (2013), 2112–2117 | DOI | MR | Zbl

[26] P. Hayden, R. Jozsa, D. Petz, A. Winter, “Structure of states which satisfy strong subadditivity of quantum entropy with equality”, Comm. Math. Phys., 246:2 (2004), 359–374 | DOI | MR | Zbl

[27] A. Jakulin, I. Bratko, Quantifying and visualizing attribute interactions, arXiv: cs/0308002

[28] W. J. McGill, “Multivariate information transmission”, Psychometrika, 19:2 (1954), 97–116 | DOI | Zbl

[29] A. Kitaev, J. Preskill, “Topological entanglement entropy”, Phys. Rev. Lett., 96:11 (2006), 110404, 4 pp. | DOI | MR

[30] H. Casini, M. Huerta, “Remarks on the entanglement entropy for disconnected regions”, J. High Energy Phys., 2009, no. 3, 048, 19 pp. ; arXiv: 0812.1773 | DOI | MR

[31] P. Hayden, M. Headrick, A. Maloney, “Holographic mutual information is monogamous”, Phys. Rev. D, 87:4 (2013), 046003 | DOI

[32] A. Kumar, Multiparty operational quantum mutual information, arXiv: 1504.07176

[33] Dong Yang, M. Horodecki, Z. D. Wang, “An additive and operational entanglement measure: conditional entanglement of mutual information”, Phys. Rev. Lett., 101:14 (2008), 140501 | DOI

[34] M. M. Wilde, “Multipartite quantum correlations and local recoverability”, Proc. A, 471:2177 (2015), 20140941, 20 pp. | DOI | MR

[35] M. M. Wilde, “Recoverability in quantum information theory”, Proc. A, 471:2182 (2015), 20150338, 19 pp. ; arXiv: 1505.04661 | DOI | MR

[36] R. Alicki, Isotropic quantum spin channels and additivity questions, arXiv: quant-ph/0402080

[37] A. S. Holevo, “The entropy gain of infinite-dimensional quantum evolutions”, Dokl. Math., 82:2 (2010), 730–731 | DOI | MR | Zbl

[38] A. S. Holevo, M. E. Shirokov, “Mutual and coherent information for infinite-dimensional quantum channels”, Problems Inform. Transmission, 46:3 (2010), 201–218 | DOI | MR | Zbl

[39] C. Adami, N. J. Cerf, “Von Neumann capacity of noisy quantum channel”, Phys. Rev. A, 56:5 (1997), 3470–3483 | DOI

[40] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal, “Entanglement-assisted classical capacity of noisy quantum channel”, Phys. Rev. Lett., 83 (1999), 3081–3084 | DOI

[41] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp. | MR | Zbl

[42] M. E. Shirokov, A. S. Holevo, “On approximation of infinite-dimensional quantum channels”, Problems Inform. Transmission, 44:2 (2008), 73–90 | DOI | MR

[43] D. Kretschmann, D. Schlingemann, R. F. Werner, A continuity theorem for Stinespring's dilation, arXiv: 0710.2495

[44] D. Leung, G. Smith, “Continuity of quantum channel capacities”, Comm. Math. Phys., 292:1 (2009), 201–215 | DOI | MR | Zbl

[45] A. S. Holevo, “Entanglement-assisted capacities of constrained quantum channels”, Theory Probab. Appl., 48:2 (2004), 243–255 | DOI | DOI | MR | Zbl

[46] M. E. Shirokov, “Entropy characteristics of subsets of states. I”, Izv. Math., 70:6 (2006), 1265–1292 | DOI | DOI | MR | Zbl

[47] D. Sutter, O. Fawzi, R. Renner, “Universal recovery map for approximate Markov chains”, Proc. A, 472:2186 (2016), 20150623, 26 pp. ; arXiv: 1504.07251 | DOI