Measures of correlations in infinite-dimensional quantum systems
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 724-768

Voir la notice de l'article provenant de la source Math-Net.Ru

Several important measures of correlations of the state of a finite-dimensional composite quantum system are defined as linear combinations of marginal entropies of this state. This paper is devoted to infinite-dimensional generalizations of such quantities and to an analysis of their properties. We introduce the notion of faithful extension of a linear combination of marginal entropies and consider several concrete examples, the simplest of which are quantum mutual information and quantum conditional entropy. Then we show that quantum conditional mutual information can be defined uniquely as a lower semicontinuous function on the set of all states of a tripartite infinite-dimensional system possessing all the basic properties valid in finite dimensions. Infinite-dimensional generalizations of some other measures of correlations in multipartite quantum systems are also considered. Applications of the results to the theory of infinite-dimensional quantum channels and their capacities are considered. The existence of a Fawzi-Renner recovery channel reproducing marginal states for all tripartite states (including states with infinite marginal entropies) is shown. Bibliography: 47 titles.
Keywords: von Neumann entropy, marginal entropy, quantum mutual information, quantum channel, entanglement-assisted capacity.
@article{SM_2016_207_5_a4,
     author = {M. E. Shirokov},
     title = {Measures of correlations in infinite-dimensional quantum systems},
     journal = {Sbornik. Mathematics},
     pages = {724--768},
     publisher = {mathdoc},
     volume = {207},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Measures of correlations in infinite-dimensional quantum systems
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 724
EP  - 768
VL  - 207
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/
LA  - en
ID  - SM_2016_207_5_a4
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Measures of correlations in infinite-dimensional quantum systems
%J Sbornik. Mathematics
%D 2016
%P 724-768
%V 207
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/
%G en
%F SM_2016_207_5_a4
M. E. Shirokov. Measures of correlations in infinite-dimensional quantum systems. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 724-768. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a4/