Continuous Morse-Smale flows with three equilibrium positions
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 702-723 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuous Morse-Smale flows on closed manifolds whose nonwandering set consists of three equilibrium positions are considered. Necessary and sufficient conditions for topological equivalence of such flows are obtained and the topological structure of the underlying manifolds is described. Bibliography: 36 titles.
Keywords: Morse-Smale flows, topological equivalence.
@article{SM_2016_207_5_a3,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Continuous {Morse-Smale} flows with three equilibrium positions},
     journal = {Sbornik. Mathematics},
     pages = {702--723},
     year = {2016},
     volume = {207},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a3/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Continuous Morse-Smale flows with three equilibrium positions
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 702
EP  - 723
VL  - 207
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a3/
LA  - en
ID  - SM_2016_207_5_a3
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Continuous Morse-Smale flows with three equilibrium positions
%J Sbornik. Mathematics
%D 2016
%P 702-723
%V 207
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a3/
%G en
%F SM_2016_207_5_a3
E. V. Zhuzhoma; V. S. Medvedev. Continuous Morse-Smale flows with three equilibrium positions. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 702-723. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a3/

[1] D. V. Anosov, “Iskhodnye ponyatiya. Elementarnaya teoriya”, Gl. 1, 2, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 156–204 | MR | Zbl

[2] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Mathematical Series, 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl

[3] J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405 | DOI | MR | Zbl

[4] D. V. Anosov, “Structurally stable systems”, Proc. Steklov Inst. Math., 169 (1986), 61–95 | MR | Zbl

[5] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | MR | Zbl

[6] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp. | MR | Zbl

[7] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | MR | Zbl

[8] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[9] E. V. Zhuzhoma, V. S. Medvedev, “Global dynamics of Morse–Smale systems”, Proc. Steklov Inst. Math., 261 (2008), 112–135 | DOI | MR | Zbl

[10] J. Eells, Jr., N. H. Kuiper, “Manifolds which are like projective planes”, Inst. Hautes Études Sci. Publ. Math., 14 (1962), 5–46 | DOI | MR | Zbl

[11] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[12] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu diffeomorfizmov na mnogoobraziyakh razmernosti dva i tri, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011, 424 pp.

[13] E. V. Zhuzhoma, V. S. Medvedev, “Gradient flows with wildly embedded closures of separatrices”, Proc. Steklov Inst. Math., 270 (2010), 132–140 | DOI | MR | Zbl

[14] E. V. Zhuzhoma, V. S. Medvedev, “Morse–Smale systems with three nonwandering points”, Dokl. Math., 84:2 (2011), 604–606 | DOI | Zbl

[15] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl

[16] M. H. Freedman, “The topology of four-dimensional manifolds”, J. Differential Geom., 17:3 (1982), 357–453 | MR | Zbl

[17] M. H. A. Newman, “The engulfing theorem for topological manifolds”, Ann. of Math. (2), 84:3 (1966), 555–571 | DOI | MR | Zbl

[18] G. Perelman, Ricci flow with surgery on three-manifolds, 2003, arXiv: math.DG/0303109

[19] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 2003, arXiv: math.DG/0307245

[20] S. Smale, “Generalized Poincaré's conjecture in dimensions greater than four”, Ann. of Math. (2), 74:2 (1961), 391–406 | DOI | MR | Zbl

[21] J. F. Adams, “On the non-existence of elements of Hopf invariant one”, Ann. of Math. (2), 72:1 (1960), 20–104 | DOI | MR | Zbl

[22] S. P. Novikov, Topologiya, 2-e izd., In-t kompyuternykh issledovanii, M.–Izhevsk, 2002, 336 pp.

[23] C. Bonatti, V. Z. Grines, V. S. Medvedev, E. Pecou, “On the topological classification of gradient-like diffeomorphisms without heteroclinic curves on three-dimensional manifolds”, Dokl. Math., 63:2 (2001), 161–164 | MR | Zbl

[24] Ch. Bonatti, V. Z. Grines, V. S. Medvedev, E. Peku, “On Morse–Smale diffeomorphisms without heteroclinic intersections on three-manifolds”, Proc. Steklov Inst. Math., 236 (2002), 58–69 | MR | Zbl

[25] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On Morse–Smale diffeomorphisms with four periodic points on closed orientable manifolds”, Math. Notes, 74:3 (2003), 352–366 | DOI | DOI | MR | Zbl

[26] L. V. Keldysh, “Topological imbeddings in Euclidean space”, Proc. Steklov Inst. Math., 81 (1966), 1–203 | MR | Zbl

[27] R. J. Daverman, G. A. Venema, Embeddings in manifolds, Grad. Stud. Math., 106, Amer. Math. Soc., Providence, RI, 2009, xviii+468 pp. | DOI | MR | Zbl

[28] Ch. Bonatti, V. Grines, V. Medvedev, E. Pécou, “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl

[29] A. V. Chernavskii, “Singular points of topological imbeddings of manifolds and the union of locally flat cells”, Soviet Math. Dokl., 7 (1966), 433–436 | MR | Zbl

[30] J. C. Cantrell, “Almost locally flat embeddings of $S^{n-1}$ in $S^n$”, Bull. Amer. Math. Soc., 69:5 (1963), 716–718 | DOI | MR | Zbl

[31] J. Cantrell, C. Edwards, “Almost locally flat imbeddings of manifolds”, Michigan Math. J., 12 (1965), 217–223 | DOI | MR | Zbl

[32] J. J. Andrews, M. L. Curtis, “Knotted 2-spheres in the 4-sphere”, Ann. of Math. (2), 70:3 (1959), 565–571 | DOI | MR | Zbl

[33] J. Palis, Jr., W. de Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York–Berlin, 1982, xii+198 pp. | MR | MR | Zbl

[34] C. McA. Gordon, J. Luecke, “Knots are determinned by their complements”, J. Amer. Math. Soc., 2:2 (1989), 371–415 | DOI | MR | Zbl

[35] P. B. Kronheimer, T. S. Mrowka, “Witten's conjecture and property P”, Geom. Topol., 8 (2004), 295–310 | DOI | MR | Zbl

[36] S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to qualitative theory of dynamical systems on closed surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996, xiv+325 pp. | MR | Zbl