Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 678-701

Voir la notice de l'article provenant de la source Math-Net.Ru

The space of one-dimensional stationary Schrödinger equations with a real-valued periodic potential and periodic boundary conditions is considered. An analytic and topological description of its foliation by hypersurfaces defined by the condition that the $n$th spectral lacuna has fixed length is given. The case when a lacuna degenerates into a point gives the Schwarzian derivative and the Arnold manifold. In the nondegenerate case, the linking number of the loop formed by potentials with shifted argument and an Arnold manifold is calculated. Bibliography: 12 titles.
Keywords: space of periodic boundary-value problems, hypersurface in the space of potentials.
Mots-clés : spectral lacuna
@article{SM_2016_207_5_a2,
     author = {Ya. M. Dymarskii and Yu. A. Evtushenko},
     title = {Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna},
     journal = {Sbornik. Mathematics},
     pages = {678--701},
     publisher = {mathdoc},
     volume = {207},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/}
}
TY  - JOUR
AU  - Ya. M. Dymarskii
AU  - Yu. A. Evtushenko
TI  - Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 678
EP  - 701
VL  - 207
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/
LA  - en
ID  - SM_2016_207_5_a2
ER  - 
%0 Journal Article
%A Ya. M. Dymarskii
%A Yu. A. Evtushenko
%T Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna
%J Sbornik. Mathematics
%D 2016
%P 678-701
%V 207
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/
%G en
%F SM_2016_207_5_a2
Ya. M. Dymarskii; Yu. A. Evtushenko. Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 678-701. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/