Mots-clés : spectral lacuna
@article{SM_2016_207_5_a2,
author = {Ya. M. Dymarskii and Yu. A. Evtushenko},
title = {Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna},
journal = {Sbornik. Mathematics},
pages = {678--701},
year = {2016},
volume = {207},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/}
}
TY - JOUR AU - Ya. M. Dymarskii AU - Yu. A. Evtushenko TI - Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna JO - Sbornik. Mathematics PY - 2016 SP - 678 EP - 701 VL - 207 IS - 5 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/ LA - en ID - SM_2016_207_5_a2 ER -
%0 Journal Article %A Ya. M. Dymarskii %A Yu. A. Evtushenko %T Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna %J Sbornik. Mathematics %D 2016 %P 678-701 %V 207 %N 5 %U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/ %G en %F SM_2016_207_5_a2
Ya. M. Dymarskii; Yu. A. Evtushenko. Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 678-701. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/
[1] V. I. Arnol'd, “Modes and quasimodes”, Funct. Anal. Appl., 6:2 (1972), 94–101 | DOI | MR | Zbl
[2] Ya. M. Dymarskii, “Manifold method in the eigenvector theory of nonlinear operators”, J. Math. Sci. (N. Y.), 154:5 (2008), 655–815 | DOI | MR | Zbl
[3] V. A. Yakubovich, V. M. Starzhinskii, Linear differential equations with periodic coefficients, v. 1, 2, Halsted Press, New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1975, xii+839 pp. | MR | MR | Zbl | Zbl
[4] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, RI, 1975, xi+525 pp. | MR | MR | Zbl | Zbl
[5] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, v. 1, Mathematik und ihre Anwendungen in Physik und Technik. Reihe A, 18, Gewöhnliche Differentialgleichungen, 6. Aufl., Akademische Verlagsgesellschaft, Geest Portig K.-G., Leipzig, 1959, xxvi+666 pp. | MR | MR | Zbl | Zbl
[6] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Addison-Wesley Series in Advanced Physics, Quantum mechanics: non-relativistic theory, Pergamon Press, London–Paris; Addison-Wesley, Reading, MA, 1958, xii+515 pp. | MR | MR | Zbl | Zbl
[7] R. Courant, D. Hilbert, Methoden der mathematischen Physik, Grundlehren Math. Wiss., I, 2. verb. Aufl., Julius Springer, Berlin, 1931, xiv+469 pp. | MR | Zbl
[8] S. Lang, Introduction to differentiable manifolds, Interscience Publ., New York–London, 1962, x+126 pp. | Zbl | Zbl
[9] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004, 552 pp.
[10] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., Nauka, M., 1986, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, т. I, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 с. ; v. II, Grad. Texts in Math., 104, 1985, xv+430 pp. ; v. III, Grad. Texts in Math., 124, 1990, ix+416 pp. | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | Zbl
[11] K. Uhlenbeck, “Generic properties of eigenfunctions”, Amer. J. Math., 98:4 (1976), 1059–1078 | DOI | MR | Zbl
[12] Yu. G. Borisovich, V. G. Zvyagin, Yu. I. Sapronov, “Non-linear Fredholm maps and the Leray–Schauder theory”, Russian Math. Surveys, 32:4 (1977), 1–54 | DOI | MR | Zbl