Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 678-701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The space of one-dimensional stationary Schrödinger equations with a real-valued periodic potential and periodic boundary conditions is considered. An analytic and topological description of its foliation by hypersurfaces defined by the condition that the $n$th spectral lacuna has fixed length is given. The case when a lacuna degenerates into a point gives the Schwarzian derivative and the Arnold manifold. In the nondegenerate case, the linking number of the loop formed by potentials with shifted argument and an Arnold manifold is calculated. Bibliography: 12 titles.
Keywords: space of periodic boundary-value problems, hypersurface in the space of potentials.
Mots-clés : spectral lacuna
@article{SM_2016_207_5_a2,
     author = {Ya. M. Dymarskii and Yu. A. Evtushenko},
     title = {Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna},
     journal = {Sbornik. Mathematics},
     pages = {678--701},
     year = {2016},
     volume = {207},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/}
}
TY  - JOUR
AU  - Ya. M. Dymarskii
AU  - Yu. A. Evtushenko
TI  - Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 678
EP  - 701
VL  - 207
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/
LA  - en
ID  - SM_2016_207_5_a2
ER  - 
%0 Journal Article
%A Ya. M. Dymarskii
%A Yu. A. Evtushenko
%T Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna
%J Sbornik. Mathematics
%D 2016
%P 678-701
%V 207
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/
%G en
%F SM_2016_207_5_a2
Ya. M. Dymarskii; Yu. A. Evtushenko. Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding to fixed lengths of the $n$th spectral lacuna. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 678-701. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a2/

[1] V. I. Arnol'd, “Modes and quasimodes”, Funct. Anal. Appl., 6:2 (1972), 94–101 | DOI | MR | Zbl

[2] Ya. M. Dymarskii, “Manifold method in the eigenvector theory of nonlinear operators”, J. Math. Sci. (N. Y.), 154:5 (2008), 655–815 | DOI | MR | Zbl

[3] V. A. Yakubovich, V. M. Starzhinskii, Linear differential equations with periodic coefficients, v. 1, 2, Halsted Press, New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1975, xii+839 pp. | MR | MR | Zbl | Zbl

[4] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, RI, 1975, xi+525 pp. | MR | MR | Zbl | Zbl

[5] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen, v. 1, Mathematik und ihre Anwendungen in Physik und Technik. Reihe A, 18, Gewöhnliche Differentialgleichungen, 6. Aufl., Akademische Verlagsgesellschaft, Geest Portig K.-G., Leipzig, 1959, xxvi+666 pp. | MR | MR | Zbl | Zbl

[6] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Addison-Wesley Series in Advanced Physics, Quantum mechanics: non-relativistic theory, Pergamon Press, London–Paris; Addison-Wesley, Reading, MA, 1958, xii+515 pp. | MR | MR | Zbl | Zbl

[7] R. Courant, D. Hilbert, Methoden der mathematischen Physik, Grundlehren Math. Wiss., I, 2. verb. Aufl., Julius Springer, Berlin, 1931, xiv+469 pp. | MR | Zbl

[8] S. Lang, Introduction to differentiable manifolds, Interscience Publ., New York–London, 1962, x+126 pp. | Zbl | Zbl

[9] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004, 552 pp.

[10] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 2-e izd., Nauka, M., 1986, 760 pp. ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications, т. I, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984, xv+464 с. ; v. II, Grad. Texts in Math., 104, 1985, xv+430 pp. ; v. III, Grad. Texts in Math., 124, 1990, ix+416 pp. | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | Zbl

[11] K. Uhlenbeck, “Generic properties of eigenfunctions”, Amer. J. Math., 98:4 (1976), 1059–1078 | DOI | MR | Zbl

[12] Yu. G. Borisovich, V. G. Zvyagin, Yu. I. Sapronov, “Non-linear Fredholm maps and the Leray–Schauder theory”, Russian Math. Surveys, 32:4 (1977), 1–54 | DOI | MR | Zbl