Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 652-677

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of this research is the quantity $m(n,k,t)$ defined as the maximum number of edges in a $k$-uniform hypergraph possessing the property that no two edges intersect in $t$ vertices. The case when $k\sim k'n$ and $t \sim t'n$ as $n \to \infty$, and $k' \in (0,1)$, $t' \in (0,k')$ are fixed constants is considered in full detail. In the case when $2t k$ the asymptotic accuracy of the Frankl-Wilson upper estimate is established; in the case when $2t \geqslant k$ new lower estimates for the quantity $m(n,k,t)$ are proposed. These new estimates are employed to derive upper estimates for the quantity $A(n,2\delta,\omega)$, which is widely used in coding theory and is defined as the maximum number of bit strings of length $n$ and weight $\omega$ having Hamming distance at least $2\delta$ from one another. Bibliography: 38 titles.
Keywords: hypergraphs with one forbidden intersection of edges, Frankl-Wilson Theorem, constant-weight error-correcting codes, Nelson-Hadwiger problem.
@article{SM_2016_207_5_a1,
     author = {A. V. Bobu and A. E. Kupriyanov and A. M. Raigorodskii},
     title = {Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection},
     journal = {Sbornik. Mathematics},
     pages = {652--677},
     publisher = {mathdoc},
     volume = {207},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/}
}
TY  - JOUR
AU  - A. V. Bobu
AU  - A. E. Kupriyanov
AU  - A. M. Raigorodskii
TI  - Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 652
EP  - 677
VL  - 207
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/
LA  - en
ID  - SM_2016_207_5_a1
ER  - 
%0 Journal Article
%A A. V. Bobu
%A A. E. Kupriyanov
%A A. M. Raigorodskii
%T Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection
%J Sbornik. Mathematics
%D 2016
%P 652-677
%V 207
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/
%G en
%F SM_2016_207_5_a1
A. V. Bobu; A. E. Kupriyanov; A. M. Raigorodskii. Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 652-677. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/