Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 652-677
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The object of this research is the quantity $m(n,k,t)$ defined as the maximum number of edges in a $k$-uniform hypergraph possessing the property that no two edges intersect in $t$ vertices. The case when $k\sim k'n$ and $t \sim t'n$ as $n \to \infty$, and $k' \in (0,1)$, $t' \in (0,k')$ are fixed constants is considered in full detail. In the case when $2t  k$ the asymptotic accuracy of the Frankl-Wilson upper estimate is established; in the case when $2t \geqslant k$ new lower estimates for the quantity $m(n,k,t)$ are proposed. These new estimates are employed to derive upper estimates for the quantity $A(n,2\delta,\omega)$, which is widely used in coding theory and is defined as the maximum number of bit strings of length $n$ and weight $\omega$ having Hamming distance at least $2\delta$ from one another.
Bibliography: 38 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
hypergraphs with one forbidden intersection of edges, Frankl-Wilson Theorem, constant-weight error-correcting codes, Nelson-Hadwiger problem.
                    
                    
                    
                  
                
                
                @article{SM_2016_207_5_a1,
     author = {A. V. Bobu and A. E. Kupriyanov and A. M. Raigorodskii},
     title = {Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection},
     journal = {Sbornik. Mathematics},
     pages = {652--677},
     publisher = {mathdoc},
     volume = {207},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Bobu AU - A. E. Kupriyanov AU - A. M. Raigorodskii TI - Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection JO - Sbornik. Mathematics PY - 2016 SP - 652 EP - 677 VL - 207 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/ LA - en ID - SM_2016_207_5_a1 ER -
%0 Journal Article %A A. V. Bobu %A A. E. Kupriyanov %A A. M. Raigorodskii %T Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection %J Sbornik. Mathematics %D 2016 %P 652-677 %V 207 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/ %G en %F SM_2016_207_5_a1
A. V. Bobu; A. E. Kupriyanov; A. M. Raigorodskii. Asymptotic study of the maximum number of edges in a~uniform hypergraph with one forbidden intersection. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 652-677. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a1/
