Combinatorial structure of $k$-semiprimitive matrix families
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 639-651
Voir la notice de l'article provenant de la source Math-Net.Ru
Protasov's Theorem on the combinatorial structure of $k$-primitive families of non-negative matrices is generalized to $k$-semiprimitive matrix families. The main tool is the binary relation of colour compatibility on the vertices of the coloured graph of the matrix family.
Bibliography: 14 titles.
Keywords:
Perron-Frobenius Theorem, coloured graphs.
Mots-clés : nonnegative matrices
Mots-clés : nonnegative matrices
@article{SM_2016_207_5_a0,
author = {Yu. A. Al'pin and V. S. Al'pina},
title = {Combinatorial structure of $k$-semiprimitive matrix families},
journal = {Sbornik. Mathematics},
pages = {639--651},
publisher = {mathdoc},
volume = {207},
number = {5},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a0/}
}
Yu. A. Al'pin; V. S. Al'pina. Combinatorial structure of $k$-semiprimitive matrix families. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 639-651. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a0/