Combinatorial structure of $k$-semiprimitive matrix families
Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 639-651

Voir la notice de l'article provenant de la source Math-Net.Ru

Protasov's Theorem on the combinatorial structure of $k$-primitive families of non-negative matrices is generalized to $k$-semiprimitive matrix families. The main tool is the binary relation of colour compatibility on the vertices of the coloured graph of the matrix family. Bibliography: 14 titles.
Keywords: Perron-Frobenius Theorem, coloured graphs.
Mots-clés : nonnegative matrices
@article{SM_2016_207_5_a0,
     author = {Yu. A. Al'pin and V. S. Al'pina},
     title = {Combinatorial structure of $k$-semiprimitive matrix families},
     journal = {Sbornik. Mathematics},
     pages = {639--651},
     publisher = {mathdoc},
     volume = {207},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_5_a0/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - V. S. Al'pina
TI  - Combinatorial structure of $k$-semiprimitive matrix families
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 639
EP  - 651
VL  - 207
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_5_a0/
LA  - en
ID  - SM_2016_207_5_a0
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A V. S. Al'pina
%T Combinatorial structure of $k$-semiprimitive matrix families
%J Sbornik. Mathematics
%D 2016
%P 639-651
%V 207
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_5_a0/
%G en
%F SM_2016_207_5_a0
Yu. A. Al'pin; V. S. Al'pina. Combinatorial structure of $k$-semiprimitive matrix families. Sbornik. Mathematics, Tome 207 (2016) no. 5, pp. 639-651. http://geodesic.mathdoc.fr/item/SM_2016_207_5_a0/