Approximating the trajectory attractor of the 3D Navier-Stokes system using various $\alpha$-models of fluid dynamics
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 610-638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the limit as $\alpha\to 0{+}$ of the long-time dynamics for various approximate $\alpha$-models of a viscous incompressible fluid and their connection with the trajectory attractor of the exact 3D Navier-Stokes system. The $\alpha$-models under consideration are divided into two classes depending on the orthogonality properties of the nonlinear terms of the equations generating every particular $\alpha$-model. We show that the attractors of $\alpha$-models of class I have stronger properties of attraction for their trajectories than the attractors of $\alpha$-models of class II. We prove that for both classes the bounded families of trajectories of the $\alpha$-models considered here converge in the corresponding weak topology to the trajectory attractor $\mathfrak A_0$ of the exact 3D Navier-Stokes system as time $t$ tends to infinity. Furthermore, we establish that the trajectory attractor $\mathfrak A_\alpha$ of every $\alpha$-model converges in the same topology to the attractor $\mathfrak A_0$ as $\alpha\to 0{+}$. We construct the minimal limits $\mathfrak A_{\min}\subseteq\mathfrak A_0$ of the trajectory attractors $\mathfrak A_\alpha$ for all $\alpha$-models as $\alpha\to 0{+}$. We prove that every such set $\mathfrak A_{\min}$ is a compact connected component of the trajectory attractor $\mathfrak A_0$, and all the $\mathfrak A_{\min}$ are strictly invariant under the action of the translation semigroup. Bibliography: 39 titles.
Keywords: 3D Navier-Stokes system, $\alpha$-models of fluid dynamics, trajectory attractor.
@article{SM_2016_207_4_a6,
     author = {V. V. Chepyzhov},
     title = {Approximating the trajectory attractor of the {3D} {Navier-Stokes} system using various $\alpha$-models of fluid dynamics},
     journal = {Sbornik. Mathematics},
     pages = {610--638},
     year = {2016},
     volume = {207},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a6/}
}
TY  - JOUR
AU  - V. V. Chepyzhov
TI  - Approximating the trajectory attractor of the 3D Navier-Stokes system using various $\alpha$-models of fluid dynamics
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 610
EP  - 638
VL  - 207
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a6/
LA  - en
ID  - SM_2016_207_4_a6
ER  - 
%0 Journal Article
%A V. V. Chepyzhov
%T Approximating the trajectory attractor of the 3D Navier-Stokes system using various $\alpha$-models of fluid dynamics
%J Sbornik. Mathematics
%D 2016
%P 610-638
%V 207
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2016_207_4_a6/
%G en
%F SM_2016_207_4_a6
V. V. Chepyzhov. Approximating the trajectory attractor of the 3D Navier-Stokes system using various $\alpha$-models of fluid dynamics. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 610-638. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a6/

[1] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “Camassa–Holm equations as a closure model for turbulent channel and pipe flow”, Phys. Rev. Lett., 81:24 (1998), 5338–5341 | DOI | MR | Zbl

[2] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “A connection between the Camassa–Holm equations and turbulent flows in channels and pipes”, Phys. Fluids, 11:8 (1999), 2343–2353 | DOI | MR | Zbl

[3] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “The Camassa–Holm equations and turbulence”, Phys. D, 133:1–4 (1999), 49–65 | DOI | MR | Zbl

[4] S. Chen, D. D. Holm, L. G. Margolin, R. Zhang, “Direct numerical simulations of the Navier–Stokes alpha model”, Phys. D, 133:1–4 (1999), 66–83 | DOI | MR | Zbl

[5] C. Foias, D. D. Holm, E. S. Titi, “The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory”, J. Dynam. Differential Equations, 14:1 (2002), 1–35 | DOI | MR | Zbl

[6] K. Mohseni, B. Kosović, S. Shkoller, J. E. Marsden, “Numerical simulations of the Lagrangian averaged Navier–Stokes equations for homogeneous isotropic turbulence”, Phys. Fluids, 15:2 (2003), 524–544 | DOI | MR | Zbl

[7] D. D. Holm, “Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion”, Phys. D, 133:1–4 (1999), 215–269 | DOI | MR | Zbl

[8] A. Cheskidov, D. D. Holm, E. Olson, E. S. Titi, “On a Leray-$\alpha$ model of turbulence”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2055 (2005), 629–649 | DOI | MR | Zbl

[9] J. Leray, “Sur le mouvemenet d'un liquide visqueux emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl

[10] C. Cao, D. D. Holm, E. S. Titi, “On the Clark-$\alpha $ model of turbulence: global regularity and long-time dynamics”, J. Turbul., 6 (2005), 20, 11 pp. | DOI | MR

[11] A. A. Ilyin, E. M. Lunasin, E. S. Titi, “A modified-Leray-$\alpha $ subgrid scale model of turbulence”, Nonlinearity, 19:4 (2006), 879–897 | DOI | MR | Zbl

[12] Y. Cao, E. M. Lunasin, E. S. Titi, “Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models”, Commun. Math. Sci., 4:4 (2006), 823–848 | DOI | MR | Zbl

[13] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[14] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | MR | Zbl | Zbl

[15] A. Cheskidov, “Boundary layer for the Navier–Stokes-alpha model of fluid turbulence”, Arch. Ration. Mech. Anal., 172:3 (2004), 333–362 | DOI | MR | Zbl

[16] J. D. Gibbon, D. D. Holm, “Length-scale estimates for the LANS-$\alpha$ equations in terms of the Reynolds number”, Phys. D, 220:1 (2006), 69–78 | DOI | MR | Zbl

[17] A. Farhat, M. S. Jolly, E. Lunasin, “Bounds on energy and enstrophy for the 3D Navier–Stokes-$\alpha$ and Leray-$\alpha$ models”, Commun. Pure Appl. Anal., 13:5 (2014), 2127–2140 | DOI | MR | Zbl

[18] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988, xvi+500 pp. | DOI | MR | Zbl

[19] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl

[20] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | MR | Zbl

[21] O. Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincei, Cambridge Univ. Press, Cambridge, 1991, xii+73 pp. | DOI | MR | Zbl

[22] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002, xiv+670 pp. | DOI | MR | Zbl

[23] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl

[24] M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731 | DOI | DOI | MR | Zbl

[25] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[26] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | MR | Zbl

[27] M. I. Vishik, S. V. Zelik, “The trajectory attractor of a non-linear elliptic system in a cylindrical domain”, Sb. Math., 187:12 (1996), 1755–1789 | DOI | DOI | MR | Zbl

[28] M. I. Vishik, V. V. Chepyzhov, “Non-autonomous Ginzburg–Landau equation and its attractors”, Sb. Math., 196:6 (2005), 791–815 | DOI | DOI | MR | Zbl

[29] V. V. Chepyzhov, M. I Vishik, “Trajectory attractors for dissipative 2D Euler and Navier–Stokes equations”, Russ. J. Math. Phys., 15:2 (2008), 156–170 | DOI | MR | Zbl

[30] V. V. Chepyzhov, M. I. Vishik, S. V. Zelik, “Strong trajectory attractors for dissipative Euler equations”, J. Math. Pures Appl. (9), 96:4 (2011), 395–407 | DOI | MR | Zbl

[31] M. I. Vishik, E. S. Titi, V. V. Chepyzhov, “On convergence of trajectory attractors of the 3D Navier–Stokes-$\alpha$ model as $\alpha$ approaches 0”, Sb. Math., 198:12 (2007), 1703–1736 | DOI | DOI | MR | Zbl

[32] V. V. Chepyzhov, E. S. Titi, M. I. Vishik, “On the convergence of solutions of the Leray-$\alpha$ model to the trajectory attractor of the 3D Navier–Stokes system”, Discrete Contin. Dyn. Syst., 17:3 (2007), 481–500 | DOI | MR | Zbl

[33] V. K. Kalantarov, B. Levant, E. S. Titi, “Gevrey regularity for the attractor of the 3D Navier–Stoke–Voight equations”, J. Nonlinear Sci., 19:2 (2009), 133–152 | DOI | MR | Zbl

[34] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd eng. ed., Gordon and Breach, Science Publishers, New York–London–Paris, 1969, xviii+224 pp. | MR | MR | Zbl | Zbl

[35] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl

[36] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1988, x+190 pp. | MR | Zbl

[37] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl

[38] J. P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl

[39] Yu. A. Dubinskij, “Weak convergence in nonlinear elliptic and parabolic equations”, Amer. Math. Soc. Transl. Ser. 2, 67, Amer. Math. Soc., Providence, RI, 1968, 226–258 | MR | Zbl