On the derivatives of unimodular polynomials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 590-609
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $D$ be the open unit disk of the complex plane; its boundary, the unit circle of the complex plane, is denoted by $\partial D$. Let $\mathscr P_n^c$ denote the set of all algebraic polynomials of degree at most $n$ with complex coefficients. For $\lambda \geqslant 0$, let
$$
\mathscr K_n^\lambda \stackrel{\mathrm{def}}{=}\biggl\{P_n:P_n(z)=\sum_{k=0}^n{a_k k^\lambda z^k}, \,
a_k \in\mathbb C,\,|a_k| = 1 \biggr\} \subset\mathscr P_n^c.
$$
The class $\mathscr K_n^0$ is often called the collection of all (complex) unimodular polynomials of degree $n$.
Given a sequence $(\varepsilon_n)$ of positive numbers tending to $0$, we say that a sequence $(P_n)$ of polynomials $P_n\in\mathscr K_n^\lambda$ is $\{\lambda, (\varepsilon_n)\}$-ultraflat if 
$$
(1-\varepsilon_n)\frac{n^{\lambda+1/2}}{\sqrt{2\lambda+1}}\leqslant|P_n(z)|\leqslant(1+\varepsilon_n)\frac{n^{\lambda +1/2}}{\sqrt{2\lambda +1}},
\qquad z \in \partial D,\quad n\in\mathbb N_0.
$$
Although we do not know, in general, whether or not $\{\lambda, (\varepsilon_n)\}$-ultraflat sequences of polynomials $P_n\in\mathscr K_n^\lambda$ exist for each fixed $\lambda>0$, we make an effort to prove various interesting properties of them. These allow us to conclude that there are no sequences $(P_n)$ of either conjugate, or plain, or skew reciprocal unimodular polynomials $P_n\in\mathscr K_n^0$ such that $(Q_n)$ with $Q_n(z)\stackrel{\mathrm{def}}{=} zP_n'(z)+1$ is a $\{1,(\varepsilon_n)\}$-ultraflat sequence of polynomials.
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
unimodular polynomial, angular derivative.
Mots-clés : ultraflat polynomial
                    
                  
                
                
                Mots-clés : ultraflat polynomial
@article{SM_2016_207_4_a5,
     author = {Paul Nevai and Tam\'as Erd\'elyi},
     title = {On the derivatives of unimodular polynomials},
     journal = {Sbornik. Mathematics},
     pages = {590--609},
     publisher = {mathdoc},
     volume = {207},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a5/}
}
                      
                      
                    Paul Nevai; Tamás Erdélyi. On the derivatives of unimodular polynomials. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 590-609. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a5/
