On the derivatives of unimodular polynomials
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 590-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $D$ be the open unit disk of the complex plane; its boundary, the unit circle of the complex plane, is denoted by $\partial D$. Let $\mathscr P_n^c$ denote the set of all algebraic polynomials of degree at most $n$ with complex coefficients. For $\lambda \geqslant 0$, let $$ \mathscr K_n^\lambda \stackrel{\mathrm{def}}{=}\biggl\{P_n:P_n(z)=\sum_{k=0}^n{a_k k^\lambda z^k}, \, a_k \in\mathbb C,\,|a_k| = 1 \biggr\} \subset\mathscr P_n^c. $$ The class $\mathscr K_n^0$ is often called the collection of all (complex) unimodular polynomials of degree $n$. Given a sequence $(\varepsilon_n)$ of positive numbers tending to $0$, we say that a sequence $(P_n)$ of polynomials $P_n\in\mathscr K_n^\lambda$ is $\{\lambda, (\varepsilon_n)\}$-ultraflat if $$ (1-\varepsilon_n)\frac{n^{\lambda+1/2}}{\sqrt{2\lambda+1}}\leqslant|P_n(z)|\leqslant(1+\varepsilon_n)\frac{n^{\lambda +1/2}}{\sqrt{2\lambda +1}}, \qquad z \in \partial D,\quad n\in\mathbb N_0. $$ Although we do not know, in general, whether or not $\{\lambda, (\varepsilon_n)\}$-ultraflat sequences of polynomials $P_n\in\mathscr K_n^\lambda$ exist for each fixed $\lambda>0$, we make an effort to prove various interesting properties of them. These allow us to conclude that there are no sequences $(P_n)$ of either conjugate, or plain, or skew reciprocal unimodular polynomials $P_n\in\mathscr K_n^0$ such that $(Q_n)$ with $Q_n(z)\stackrel{\mathrm{def}}{=} zP_n'(z)+1$ is a $\{1,(\varepsilon_n)\}$-ultraflat sequence of polynomials. Bibliography: 18 titles.
Keywords: unimodular polynomial, angular derivative.
Mots-clés : ultraflat polynomial
@article{SM_2016_207_4_a5,
     author = {Paul Nevai and Tam\'as Erd\'elyi},
     title = {On the derivatives of unimodular polynomials},
     journal = {Sbornik. Mathematics},
     pages = {590--609},
     year = {2016},
     volume = {207},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a5/}
}
TY  - JOUR
AU  - Paul Nevai
AU  - Tamás Erdélyi
TI  - On the derivatives of unimodular polynomials
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 590
EP  - 609
VL  - 207
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a5/
LA  - en
ID  - SM_2016_207_4_a5
ER  - 
%0 Journal Article
%A Paul Nevai
%A Tamás Erdélyi
%T On the derivatives of unimodular polynomials
%J Sbornik. Mathematics
%D 2016
%P 590-609
%V 207
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2016_207_4_a5/
%G en
%F SM_2016_207_4_a5
Paul Nevai; Tamás Erdélyi. On the derivatives of unimodular polynomials. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 590-609. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a5/

[1] P. Erdős, “Some unsolved problems”, Michigan Math. J., 4:3 (1957), 291–300 | DOI | MR | Zbl

[2] T. Körner, “On a polynomial of Byrnes”, Bull. London Math. Soc., 12:3 (1980), 219–224 | DOI | MR | Zbl

[3] J.-P. Kahane, “Sur les polynômes à coefficient unimodulaires”, Bull. London Math. Soc., 12:5 (1980), 321–342 | DOI | MR | Zbl

[4] J. E. Littlewood, Some problems in real and complex analysis, Heath Math. Monogr., D. C. Heath and Co., Lexington, MA, 1968, ix+57 pp. | MR | Zbl

[5] H. Queffelec, B. Saffari, “On Bernstein's inequality and Kahane's ultraflat polynomials”, J. Fourier Anal. Appl., 2:6 (1996), 519–582 | DOI | MR | Zbl

[6] T. Erdélyi, “Polynomials with Littlewood-type coefficient constraints”, Approximation theory X: abstract and classical analysis (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, 153–196 | MR | Zbl

[7] T. Erdélyi, “The resolution of Saffari's phase problem”, C. R. Acad. Sci. Paris Sér. I Math., 331:10 (2000), 803–808 | DOI | MR | Zbl

[8] T. Erdélyi, “The phase problem of ultraflat unimodular polynomials: the resolution of the conjecture of Saffari”, Math. Ann., 321:4 (2001), 905–924 | DOI | MR | Zbl

[9] T. Erdélyi, “Proof of Saffari's near-orthogonality conjecture for ultraflat sequences of unimodular polynomials”, C. R. Acad. Sci. Paris Sér. I Math., 333:7 (2001), 623–628 | DOI | MR | Zbl

[10] T. Erdélyi, “On the real part of ultraflat sequences of unimodular polynomials”, Math. Ann., 326:3 (2003), 489–498 | MR | Zbl

[11] B. Saffari, “The phase behaviour of ultraflat unimodular polynomials”, Probabilistic and stochastic methods in analysis, with applications (Il Ciocco, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 372, Kluwer Acad. Publ., Dordrecht, 1992, 555–572 | DOI | MR | Zbl

[12] E. Bombieri, J. Bourgain, “On Kahane's ultraflat polynomials”, J. Eur. Math. Soc. (JEMS), 11:3 (2009), 627–703 | MR | Zbl

[13] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl

[14] P. Nevai, The Anonymous Referee, “The Bernstein inequality and the Schur inequality are equivalent”, J. Approx. Theory, 182 (2014), 103–109 | DOI | MR | Zbl

[15] P. Nevai, The true story of $n$ vs. $2n$ in the Bernstein inequality, in preparation

[16] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. 1, Grundlehren Math. Wiss., 19, Reihen. Integralrechnung. Funktionentheorie, Springer-Verlag, Berlin–New York, 1964, xvi+338 pp. | MR | MR | Zbl

[17] R. P. Boas, A primer of real functions, Carus Math. Monogr., 13, 4th ed., Math. Assoc. America, Washington, DC, 1996, xiv+305 pp. | MR | Zbl

[18] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, River Edge, NJ, 1994, xiv+821 pp. | DOI | MR | Zbl