On a dense winding of the 2-dimensional torus
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 581-589 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An important role in the solution of a class of optimal control problems is played by a certain polynomial of degree $2(n-1)$ of special form with integer coefficients. The linear independence of a family of $k$ special roots of this polynomial over $\mathbb{Q}$ implies the existence of a solution of the original problem with optimal control in the form of a dense winding of a $k$-dimensional Clifford torus, which is traversed in finite time. In this paper, it is proved that for every integer $n>3$ one can take $k$ to be equal to $2$. Bibliography: 6 titles.
Keywords: optimal control, dense winding, linear independence.
Mots-clés : Galois group
@article{SM_2016_207_4_a4,
     author = {D. D. Kiselev},
     title = {On a~dense winding of the 2-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {581--589},
     year = {2016},
     volume = {207},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - On a dense winding of the 2-dimensional torus
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 581
EP  - 589
VL  - 207
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/
LA  - en
ID  - SM_2016_207_4_a4
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T On a dense winding of the 2-dimensional torus
%J Sbornik. Mathematics
%D 2016
%P 581-589
%V 207
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/
%G en
%F SM_2016_207_4_a4
D. D. Kiselev. On a dense winding of the 2-dimensional torus. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 581-589. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/

[1] M. I. Zelikin, L. V. Lokutsievskiy, R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control”, Proc. Steklov Inst. Math., 277 (2012), 67–83 | DOI | MR | Zbl

[2] I. Kupka, “Generic properties of extremals in optimal control problems”, Differential geometric control theory (Houghton, Mich., 1982), Progr. Math., 27, Birkhäuser, Boston, MA, 1983, 310–315 | MR | Zbl

[3] M. I. Zelikin, V. F. Borisov, Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Systems Control Found. Appl., Birkhäuser, Boston, MA, 1994, xvi+242 pp. | DOI | MR | Zbl

[4] A. A. Milyutin, A. E. Ilyutovich, N. P. Osmolovskii, S. V. Chukanov, Optimalnoe upravlenie v lineinykh sistemakh, Nauka, M., 1993, 269 pp. | MR | Zbl

[5] M. I. Zelikin, D. D. Kiselev, L. V. Lokutsievskii, “Optimal control and Galois theory”, Sb. Math., 204:11 (2013), 1624–1638 | DOI | DOI | MR | Zbl

[6] F. Hajir, “Algebraic properties of a family of generalized Laguerre polynomials”, Canad. J. Math., 61:3 (2009), 583–603 | DOI | MR | Zbl