On a~dense winding of the 2-dimensional torus
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 581-589
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An important role in the solution of a class of optimal control problems is played by a certain polynomial of degree $2(n-1)$ of special form with integer coefficients. The linear independence of a family of $k$ special roots of this polynomial over $\mathbb{Q}$ implies the existence of a solution of the original problem with optimal control in the form of a dense winding of a $k$-dimensional Clifford torus, which is traversed in finite time. In this paper, it is proved that for every integer $n>3$ one can take $k$ to be equal to $2$.
Bibliography: 6 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
optimal control, dense winding, linear independence.
Mots-clés : Galois group
                    
                  
                
                
                Mots-clés : Galois group
@article{SM_2016_207_4_a4,
     author = {D. D. Kiselev},
     title = {On a~dense winding of the 2-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {581--589},
     publisher = {mathdoc},
     volume = {207},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/}
}
                      
                      
                    D. D. Kiselev. On a~dense winding of the 2-dimensional torus. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 581-589. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/
