Mots-clés : Galois group
@article{SM_2016_207_4_a4,
author = {D. D. Kiselev},
title = {On a~dense winding of the 2-dimensional torus},
journal = {Sbornik. Mathematics},
pages = {581--589},
year = {2016},
volume = {207},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/}
}
D. D. Kiselev. On a dense winding of the 2-dimensional torus. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 581-589. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a4/
[1] M. I. Zelikin, L. V. Lokutsievskiy, R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control”, Proc. Steklov Inst. Math., 277 (2012), 67–83 | DOI | MR | Zbl
[2] I. Kupka, “Generic properties of extremals in optimal control problems”, Differential geometric control theory (Houghton, Mich., 1982), Progr. Math., 27, Birkhäuser, Boston, MA, 1983, 310–315 | MR | Zbl
[3] M. I. Zelikin, V. F. Borisov, Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Systems Control Found. Appl., Birkhäuser, Boston, MA, 1994, xvi+242 pp. | DOI | MR | Zbl
[4] A. A. Milyutin, A. E. Ilyutovich, N. P. Osmolovskii, S. V. Chukanov, Optimalnoe upravlenie v lineinykh sistemakh, Nauka, M., 1993, 269 pp. | MR | Zbl
[5] M. I. Zelikin, D. D. Kiselev, L. V. Lokutsievskii, “Optimal control and Galois theory”, Sb. Math., 204:11 (2013), 1624–1638 | DOI | DOI | MR | Zbl
[6] F. Hajir, “Algebraic properties of a family of generalized Laguerre polynomials”, Canad. J. Math., 61:3 (2009), 583–603 | DOI | MR | Zbl