@article{SM_2016_207_4_a3,
author = {D. P. Il'yutko and E. A. Sevost'yanov},
title = {Open discrete mappings with unbounded coefficient of quasi-conformality on {Riemannian} manifolds},
journal = {Sbornik. Mathematics},
pages = {537--580},
year = {2016},
volume = {207},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a3/}
}
TY - JOUR AU - D. P. Il'yutko AU - E. A. Sevost'yanov TI - Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds JO - Sbornik. Mathematics PY - 2016 SP - 537 EP - 580 VL - 207 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a3/ LA - en ID - SM_2016_207_4_a3 ER -
D. P. Il'yutko; E. A. Sevost'yanov. Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 537-580. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a3/
[1] E. S. Afanaseva, V. I. Ryazanov, R. R. Salimov, “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. matem. vestn., 8:3 (2011), 319–342 ; E. S. Afanasieva, V. I. Ryazanov, R. R. Salimov, “On mappings in the Orlicz–Sobolev classes on Riemannian manifolds”, J. Math. Sci. (N. Y.), 181:1 (2012), 1–17 | MR | Zbl | DOI
[2] C. J. Bishop, V. Ya. Gutlyanskiĭ, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 2003:22 (2003), 1397–1420 | DOI | MR | Zbl
[3] M. Cristea, “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1–3 (2010), 61–90 | DOI | MR | Zbl
[4] V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation. A geometric approach, Dev. Math., 26, Springer-Verlag, New York, 2012, xiv+301 pp. | DOI | MR | Zbl
[5] I. Holopainen, P. Pankka, “Mappings of finite distortion: global homeomorphism theorem”, Ann. Acad. Sci. Fenn. Math., 29:1 (2004), 59–80 | MR | Zbl
[6] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2001, xvi+552 pp. | MR | Zbl
[7] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevostyanov, “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 ; D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, “Toward the theory of the Orlicz–Sobolev classes”, St. Petersburg Math. J., 25:6 (2014), 929–963 | MR | Zbl | DOI
[8] D. Kovtonyuk, R. Salimov, E. Sevostyanov, K teorii otobrazhenii klassov Soboleva i Orlicha–Soboleva, Naukova dumka, Kiev, 2013, 303 pp.
[9] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl
[10] V. I. Ryazanov, R. R. Salimov, “Slabo ploskie prostranstva i granitsy v teorii otobrazhenii”, Ukr. matem. vestn., 4:2 (2007), 199–234 | MR
[11] E. S. Smolovaya, “Granichnoe povedenie koltsevykh $Q$-gomeomorfizmov v metricheskikh prostranstvakh”, Ukr. matem. zhurn., 62:5 (2012), 682–689 ; E. S. Smolovaya, “Boundary behavior of ring $Q$-homeomorphisms in metric spaces”, Ukrainian Math. J., 62:5 (2010), 785–793 | MR | Zbl | DOI
[12] V. A. Zorich, “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. analiz i ego pril., 34:3 (2000), 37–48 | DOI | MR | Zbl
[13] M. A. Lavrentev, “Osnovnaya zadacha teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Matem. sb., 21(63):2 (1947), 285–320 | MR | Zbl
[14] M. A. Lavrentev, “Osnovnaya teorema teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Izv. AN SSSR. Ser. matem., 12:6 (1948), 513–554 | MR | Zbl
[15] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982, 286 pp. ; Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xv+362 pp. | MR | Zbl | MR | Zbl
[16] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 1–40 | MR | Zbl
[17] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13 | MR | Zbl
[18] V. M. Miklyukov, “Ob ustranimykh osobennostyakh kvazikonformnykh otobrazhenii v prostranstve”, Dokl. AN SSSR, 188:3 (1969), 525–527 | MR | Zbl
[19] V. M. Miklyukov, “Granichnye svoistva $n$-mernykh kvazikonformnykh otobrazhenii”, Dokl. AN SSSR, 193:3 (1970), 525–527 | MR | Zbl
[20] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993, x+213 pp. | DOI | MR | Zbl
[21] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp. | DOI | MR | Zbl
[22] S. K. Vodopyanov, “O zamknutosti klassov otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Matem. tr., 5:2 (2002), 91–137 ; S. K. Vodop'yanov, “Closure of classes of mappings with bounded distortion on Carnot groups”, Siberian Adv. Math., 14:1 (2004), 1–42 | MR | Zbl
[23] S. K. Vodopyanov, “Foundations of the theory of mappings with bounded distortion on Carnot groups”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 303–344 | DOI | MR | Zbl
[24] S. K. Vodopyanov, V. M. Goldshtein, Prostranstva Soboleva i spetsialnye klassy otobrazhenii, NGU, Novosibirsk, 1981, 72 pp. | MR
[25] S. K. Vodopyanov, V. M. Goldshtein, Yu. G. Reshetnyak, “O geometricheskikh svoistvakh funktsii s pervymi oboschennymi proizvodnymi”, UMN, 34:1(205) (1979), 17–65 | MR | Zbl
[26] S. K. Vodopyanov, A. V. Greshnov, “Analiticheskie svoistva kvazikonformnykh otobrazhenii na gruppakh Karno”, Sib. matem. zhurn., 36:6 (1995), 1317–1327 | MR | Zbl
[27] A. V. Greshnov, “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori i ikh kasatelnymi konusami”, Sib. matem. zhurn., 48:2 (2007), 290–312 | MR | Zbl
[28] D. V. Isangulova, “Klass otobrazhenii s ogranichennym udelnym kolebaniem i integriruemost otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Sib. matem. zhurn., 48:2 (2007), 313–334 | MR | Zbl
[29] I. Markina, “Singularities of quasiregular mappings on Carnot groups”, Sci. Ser. A Math. Sci. (N.S.), 11 (2005), 69–81 | MR | Zbl
[30] A. Ukhlov, S. K. Vodop'yanov, “Mappings associated with weighted Sobolev spaces”, Complex analysis and dynamical systems III, Contemp. Math., 455, Amer. Math. Soc., Providence, RI, 2008, 369–382 | DOI | MR | Zbl
[31] S. K. Vodopyanov, A. D. Ukhlov, “Prostranstva Coboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. matem. zhurn., 39:4 (1998), 776–795 | MR | Zbl
[32] E. A. Poletskii, “Metod modulei dlya negomeomorfnykh kvazikonformnykh otobrazhenii”, Matem. sb., 83(125):2(10) (1970), 261–272 | MR | Zbl
[33] E. A. Sevostyanov, “Obobschenie odnoi lemmy E. A. Poletskogo na klassy prostranstvennykh otobrazhenii”, Ukr. matem. zhurn., 61:7 (2009), 969–975 | MR | Zbl
[34] R. R. Salimov, E. A. Sevostyanov, “Teoriya koltsevykh $Q$-otobrazhenii v geometricheskoi teorii funktsii”, Matem. sb., 201:6 (2010), 131–158 | DOI | MR | Zbl
[35] E. A. Sevostyanov, “Ob integralnoi kharakterizatsii nekotorykh obobschenii kvaziregulyarnykh otobrazhenii i znachenii usloviya raskhodimosti integrala v geometricheskoi teorii funktsii”, Ukr. matem. zhurn., 61:10 (2009), 1367–1380 | MR | Zbl
[36] J. M. Lee, Riemannian manifolds. An introduction to curvature, Grad. Texts in Math., 176, Springer-Verlag, New York, 1997, xvi+224 pp. | DOI | MR | Zbl
[37] E. G. Poznyak, E. V. Shikin, Differentsialnaya geometriya. Pervoe znakomstvo, Izd-vo MGU, M., 1990, 384 pp. | Zbl
[38] V. G. Mazya, Prostranstva Soboleva, Izd-vo LGU, L., 1985, 416 pp. | MR | Zbl
[39] T. Rado, P. V. Reichelderfer, Continuous transformations in analysis, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp. | MR | Zbl
[40] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958, 271 pp. ; M. A. Krasnosel'skij, Ya. B. Rutitskij, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | Zbl | MR | Zbl
[41] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[42] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942, x+278 pp. | MR | Zbl
[43] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, x+140 pp. | DOI | MR | Zbl
[44] T. Adamowicz, N. Shanmugalingam, “Non-conformal Loewner type estimates for modulus of curve families”, Ann. Acad. Sci. Fenn. Math., 35 (2010), 609–626 | DOI | MR | Zbl
[45] K. Kuratovskii, Topologiya, v. 2, Mir, M., 1969, 624 pp. ; K. Kuratowski, Topology, v. II, Academic Press, New York, 1968, 622 pp. | MR
[46] V. Gurevich, G. Volmen, Teoriya razmernosti, IL, M., 1948, 232 pp.
[47] S. Saks, Teoriya integrala, IL, M., 1949, 496 pp.; S. Saks, Theory of the integral, Monografie Matematyczne, 7, 2nd ed., G. E. Stechert, Warszawa–New York, 1937, vi+347 pp. | MR | Zbl
[48] I. I. Privalov, Vvedenie v teoriyu funktsii kompleksnogo peremennogo, 13-e izd., Nauka, M., 1984, 432 pp. | MR | Zbl
[49] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. ; H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | Zbl | MR | Zbl
[50] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103:3 (1962), 353–393 | DOI | MR | Zbl
[51] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl
[52] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl