Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 537-580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with problems at the intersection of the theory of spatial quasi-conformal mappings and the theory of Riemann surfaces. Theorems on the local behaviour of one class of open discrete mappings with unbounded coefficient of quasi-conformality, which map between arbitrary Riemannian manifolds, are obtained. Such mappings are also shown to extend to isolated points of the boundary of the domain. Some results on the local behaviour of Sobolev and Orlicz-Sobolev classes are obtained as an application. Bibliography: 52 titles.
Keywords: Riemannian manifold, modulus of families of paths and surfaces, mapping of bounded or finite distortion, local and global behaviour of mappings, Orlicz-Sobolev class.
@article{SM_2016_207_4_a3,
     author = {D. P. Il'yutko and E. A. Sevost'yanov},
     title = {Open discrete mappings with unbounded coefficient of quasi-conformality on {Riemannian} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {537--580},
     year = {2016},
     volume = {207},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a3/}
}
TY  - JOUR
AU  - D. P. Il'yutko
AU  - E. A. Sevost'yanov
TI  - Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 537
EP  - 580
VL  - 207
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a3/
LA  - en
ID  - SM_2016_207_4_a3
ER  - 
%0 Journal Article
%A D. P. Il'yutko
%A E. A. Sevost'yanov
%T Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds
%J Sbornik. Mathematics
%D 2016
%P 537-580
%V 207
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2016_207_4_a3/
%G en
%F SM_2016_207_4_a3
D. P. Il'yutko; E. A. Sevost'yanov. Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 537-580. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a3/

[1] E. S. Afanaseva, V. I. Ryazanov, R. R. Salimov, “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. matem. vestn., 8:3 (2011), 319–342 ; E. S. Afanasieva, V. I. Ryazanov, R. R. Salimov, “On mappings in the Orlicz–Sobolev classes on Riemannian manifolds”, J. Math. Sci. (N. Y.), 181:1 (2012), 1–17 | MR | Zbl | DOI

[2] C. J. Bishop, V. Ya. Gutlyanskiĭ, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Int. J. Math. Math. Sci., 2003:22 (2003), 1397–1420 | DOI | MR | Zbl

[3] M. Cristea, “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1–3 (2010), 61–90 | DOI | MR | Zbl

[4] V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation. A geometric approach, Dev. Math., 26, Springer-Verlag, New York, 2012, xiv+301 pp. | DOI | MR | Zbl

[5] I. Holopainen, P. Pankka, “Mappings of finite distortion: global homeomorphism theorem”, Ann. Acad. Sci. Fenn. Math., 29:1 (2004), 59–80 | MR | Zbl

[6] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2001, xvi+552 pp. | MR | Zbl

[7] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevostyanov, “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 ; D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, “Toward the theory of the Orlicz–Sobolev classes”, St. Petersburg Math. J., 25:6 (2014), 929–963 | MR | Zbl | DOI

[8] D. Kovtonyuk, R. Salimov, E. Sevostyanov, K teorii otobrazhenii klassov Soboleva i Orlicha–Soboleva, Naukova dumka, Kiev, 2013, 303 pp.

[9] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009, xii+367 pp. | DOI | MR | Zbl

[10] V. I. Ryazanov, R. R. Salimov, “Slabo ploskie prostranstva i granitsy v teorii otobrazhenii”, Ukr. matem. vestn., 4:2 (2007), 199–234 | MR

[11] E. S. Smolovaya, “Granichnoe povedenie koltsevykh $Q$-gomeomorfizmov v metricheskikh prostranstvakh”, Ukr. matem. zhurn., 62:5 (2012), 682–689 ; E. S. Smolovaya, “Boundary behavior of ring $Q$-homeomorphisms in metric spaces”, Ukrainian Math. J., 62:5 (2010), 785–793 | MR | Zbl | DOI

[12] V. A. Zorich, “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. analiz i ego pril., 34:3 (2000), 37–48 | DOI | MR | Zbl

[13] M. A. Lavrentev, “Osnovnaya zadacha teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Matem. sb., 21(63):2 (1947), 285–320 | MR | Zbl

[14] M. A. Lavrentev, “Osnovnaya teorema teorii kvazi-konformnykh otobrazhenii ploskikh oblastei”, Izv. AN SSSR. Ser. matem., 12:6 (1948), 513–554 | MR | Zbl

[15] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982, 286 pp. ; Yu. G. Reshetnyak, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989, xv+362 pp. | MR | Zbl | MR | Zbl

[16] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 1–40 | MR | Zbl

[17] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13 | MR | Zbl

[18] V. M. Miklyukov, “Ob ustranimykh osobennostyakh kvazikonformnykh otobrazhenii v prostranstve”, Dokl. AN SSSR, 188:3 (1969), 525–527 | MR | Zbl

[19] V. M. Miklyukov, “Granichnye svoistva $n$-mernykh kvazikonformnykh otobrazhenii”, Dokl. AN SSSR, 193:3 (1970), 525–527 | MR | Zbl

[20] S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993, x+213 pp. | DOI | MR | Zbl

[21] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp. | DOI | MR | Zbl

[22] S. K. Vodopyanov, “O zamknutosti klassov otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Matem. tr., 5:2 (2002), 91–137 ; S. K. Vodop'yanov, “Closure of classes of mappings with bounded distortion on Carnot groups”, Siberian Adv. Math., 14:1 (2004), 1–42 | MR | Zbl

[23] S. K. Vodopyanov, “Foundations of the theory of mappings with bounded distortion on Carnot groups”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 303–344 | DOI | MR | Zbl

[24] S. K. Vodopyanov, V. M. Goldshtein, Prostranstva Soboleva i spetsialnye klassy otobrazhenii, NGU, Novosibirsk, 1981, 72 pp. | MR

[25] S. K. Vodopyanov, V. M. Goldshtein, Yu. G. Reshetnyak, “O geometricheskikh svoistvakh funktsii s pervymi oboschennymi proizvodnymi”, UMN, 34:1(205) (1979), 17–65 | MR | Zbl

[26] S. K. Vodopyanov, A. V. Greshnov, “Analiticheskie svoistva kvazikonformnykh otobrazhenii na gruppakh Karno”, Sib. matem. zhurn., 36:6 (1995), 1317–1327 | MR | Zbl

[27] A. V. Greshnov, “Lokalnaya approksimatsiya ravnomerno regulyarnykh kvaziprostranstv Karno–Karateodori i ikh kasatelnymi konusami”, Sib. matem. zhurn., 48:2 (2007), 290–312 | MR | Zbl

[28] D. V. Isangulova, “Klass otobrazhenii s ogranichennym udelnym kolebaniem i integriruemost otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Sib. matem. zhurn., 48:2 (2007), 313–334 | MR | Zbl

[29] I. Markina, “Singularities of quasiregular mappings on Carnot groups”, Sci. Ser. A Math. Sci. (N.S.), 11 (2005), 69–81 | MR | Zbl

[30] A. Ukhlov, S. K. Vodop'yanov, “Mappings associated with weighted Sobolev spaces”, Complex analysis and dynamical systems III, Contemp. Math., 455, Amer. Math. Soc., Providence, RI, 2008, 369–382 | DOI | MR | Zbl

[31] S. K. Vodopyanov, A. D. Ukhlov, “Prostranstva Coboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. matem. zhurn., 39:4 (1998), 776–795 | MR | Zbl

[32] E. A. Poletskii, “Metod modulei dlya negomeomorfnykh kvazikonformnykh otobrazhenii”, Matem. sb., 83(125):2(10) (1970), 261–272 | MR | Zbl

[33] E. A. Sevostyanov, “Obobschenie odnoi lemmy E. A. Poletskogo na klassy prostranstvennykh otobrazhenii”, Ukr. matem. zhurn., 61:7 (2009), 969–975 | MR | Zbl

[34] R. R. Salimov, E. A. Sevostyanov, “Teoriya koltsevykh $Q$-otobrazhenii v geometricheskoi teorii funktsii”, Matem. sb., 201:6 (2010), 131–158 | DOI | MR | Zbl

[35] E. A. Sevostyanov, “Ob integralnoi kharakterizatsii nekotorykh obobschenii kvaziregulyarnykh otobrazhenii i znachenii usloviya raskhodimosti integrala v geometricheskoi teorii funktsii”, Ukr. matem. zhurn., 61:10 (2009), 1367–1380 | MR | Zbl

[36] J. M. Lee, Riemannian manifolds. An introduction to curvature, Grad. Texts in Math., 176, Springer-Verlag, New York, 1997, xvi+224 pp. | DOI | MR | Zbl

[37] E. G. Poznyak, E. V. Shikin, Differentsialnaya geometriya. Pervoe znakomstvo, Izd-vo MGU, M., 1990, 384 pp. | Zbl

[38] V. G. Mazya, Prostranstva Soboleva, Izd-vo LGU, L., 1985, 416 pp. | MR | Zbl

[39] T. Rado, P. V. Reichelderfer, Continuous transformations in analysis, Grundlehren Math. Wiss., LXXV, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955, vii+442 pp. | MR | Zbl

[40] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958, 271 pp. ; M. A. Krasnosel'skij, Ya. B. Rutitskij, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | Zbl | MR | Zbl

[41] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[42] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., 28, Amer. Math. Soc., New York, 1942, x+278 pp. | MR | Zbl

[43] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, x+140 pp. | DOI | MR | Zbl

[44] T. Adamowicz, N. Shanmugalingam, “Non-conformal Loewner type estimates for modulus of curve families”, Ann. Acad. Sci. Fenn. Math., 35 (2010), 609–626 | DOI | MR | Zbl

[45] K. Kuratovskii, Topologiya, v. 2, Mir, M., 1969, 624 pp. ; K. Kuratowski, Topology, v. II, Academic Press, New York, 1968, 622 pp. | MR

[46] V. Gurevich, G. Volmen, Teoriya razmernosti, IL, M., 1948, 232 pp.

[47] S. Saks, Teoriya integrala, IL, M., 1949, 496 pp.; S. Saks, Theory of the integral, Monografie Matematyczne, 7, 2nd ed., G. E. Stechert, Warszawa–New York, 1937, vi+347 pp. | MR | Zbl

[48] I. I. Privalov, Vvedenie v teoriyu funktsii kompleksnogo peremennogo, 13-e izd., Nauka, M., 1984, 432 pp. | MR | Zbl

[49] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. ; H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | Zbl | MR | Zbl

[50] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103:3 (1962), 353–393 | DOI | MR | Zbl

[51] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl

[52] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl