Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 519-536 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The ranks of the limit Weyl intervals are known to serve as the geometric measure of degeneracy of the solution set to a Stieltjes matrix moment problem. This paper puts forward the first operator measure of degeneracy for the solution set to a Stieltjes matrix moment problem in terms of the deficiency vectors of a pair of associated positive symmetric operators. A relationship between the geometric and operator measures of degeneracy for a Stieltjes matrix moment problem is established, from which some corollaries about the Stieltjes matrix moment problem are obtained. Bibliography 19 titles.
Keywords: Weyl intervals, Weyl discs, symmetric operators, deficiency vectors.
Mots-clés : the Stieltjes matrix moment problem
@article{SM_2016_207_4_a2,
     author = {Yu. M. Dyukarev},
     title = {Geometric and operator measures of degeneracy for the set of solutions to the {Stieltjes} matrix moment problem},
     journal = {Sbornik. Mathematics},
     pages = {519--536},
     year = {2016},
     volume = {207},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a2/}
}
TY  - JOUR
AU  - Yu. M. Dyukarev
TI  - Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 519
EP  - 536
VL  - 207
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a2/
LA  - en
ID  - SM_2016_207_4_a2
ER  - 
%0 Journal Article
%A Yu. M. Dyukarev
%T Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem
%J Sbornik. Mathematics
%D 2016
%P 519-536
%V 207
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2016_207_4_a2/
%G en
%F SM_2016_207_4_a2
Yu. M. Dyukarev. Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 519-536. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a2/

[1] M. G. Krein, “Osnovnye polozheniya teorii predstavleniya ermitovykh operatorov s indeksom defekta $(m,m)$”, Ukr. matem. zhurn., 1:2 (1949), 3–66 ; M. G. Krein, “Fundamental aspects of the representation theory of Hermitian operators with deficiency index $(m,m)$”, Amer. Math. Soc. Transl. Ser. 2, 97, Amer. Math. Soc., Providence, RI, 1971, 75–143 | MR | Zbl

[2] M. G. Krein, “Beskonechnye $J$ matritsy i matrichnaya problema momentov”, Dokl. AN SSSR, 69:3 (1949), 125–128 | MR | Zbl

[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965, 798 pp. ; Yu. M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators, Transl. Math. Monogr., 17, Amer. Math. Soc., Providence, RI, 1968, ix+809 pp. | MR | Zbl | MR | Zbl

[4] A. I. Aptekarev, E. M. Nikishin, “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Matem. sb., 121(163):3(7) (1983), 327–358 ; A. I. Aptekarev, E. M. Nikishin, “The scattering problem for a discrete Sturm–Liouville operator”, Math. USSR-Sb., 49:2 (1984), 325–355 | MR | Zbl | DOI

[5] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. ; N. I. Akhiezer, The classical moment problem and some related questions in analysis, Univ. Math. Monogr., Oliver Boyd, Edinburgh–London, 1965, x+253 pp. | MR | Zbl | Zbl

[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988, 256 pp. ; E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | Zbl | MR | Zbl

[7] B. Simon, “The classical moment problem as a self-adjoint finite differense operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl

[8] V. I. Kogan, “Ob operatorakh, porozhdennykh $l_p$-matritsami v sluchae maksimalnykh indeksov defekta”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1970, no. 11, 103–107 | MR | Zbl

[9] Yu. M. Dyukarev, “O defektnykh chislakh simmetricheskikh operatorov, porozhdennykh blochnymi matritsami Yakobi”, Matem. sb., 197:8 (2006), 73–100 | DOI | MR | Zbl

[10] Yu. M. Dyukarev, “Primery blochnykh matrits Yakobi, porozhdayuschikh simmetricheskie operatory s lyubymi vozmozhnymi defektnymi chislami”, Matem. sb., 201:12 (2010), 83–92 | DOI | MR | Zbl

[11] I. V. Kovalishina, V. P. Potapov, “Indefinitnaya metrika v probleme Nevanlinny–Pika”, Dokl. AN Arm.SSR, 59:1 (1974), 17–22 ; I. V. Kovalishina, V. P. Potapov, “An indefinite metric in the Nevanlinna–Pick problem”, Amer. Math. Soc. Transl. Ser. 2, 138, Amer. Math. Soc., Providence, RI, 1988, 15–19 | MR | Zbl

[12] I. V. Kovalishina, “Analiticheskaya teoriya odnogo klassa interpolyatsionnykh zadach”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 455–497 ; I. V. Kovalishina, “Analytic theory of a class of interpolation problems”, Math. USSR-Izv., 22:3 (1984), 419–463 | MR | Zbl | DOI

[13] C. Berg, “The matrix moment problem”, Coimbra lecture notes on orthogonal polynomials, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., New York, 2008, 1–57 | Zbl

[14] Yu. M. Dyukarev, “O kriteriyakh neopredelennosti matrichnoi problemy momentov Stiltesa”, Matem. zametki, 75:1 (2004), 71–88 | DOI | MR | Zbl

[15] Yu. M. Dyukarev, “Obobschennyi kriterii Stiltesa polnoi neopredelennosti interpolyatsionnykh zadach”, Matem. zametki, 84:1 (2008), 23–39 | DOI | MR | Zbl

[16] Yu. M. Dyukarev, A. E. Choke Rivero, “Matrichnaya versiya teoremy Gamburgera”, Matem. zametki, 91:4 (2012), 522–529 | DOI | Zbl

[17] I. Yu. Serikova, “Intervaly Veilya, assotsiirovannye s zadachei Nevanlinny–Pika v klasse $\mathcal{R}[a,b]$”, Visn. Kharkivskogo nats. un-tu, ser. «Matematika, priklad. matematika i mekhanika», 2005, no. 771, vip. 55, 37–54 | Zbl

[18] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 551 pp. ; M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems. Ideas and problems of P. L. Cebysev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | Zbl | Zbl

[19] A. E. Choque Rivero, “On Dyukarev's resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials”, Linear Algebra Appl., 474:1 (2015), 44–109 | DOI | MR | Zbl