Mots-clés : the Stieltjes matrix moment problem
@article{SM_2016_207_4_a2,
author = {Yu. M. Dyukarev},
title = {Geometric and operator measures of degeneracy for the set of solutions to the {Stieltjes} matrix moment problem},
journal = {Sbornik. Mathematics},
pages = {519--536},
year = {2016},
volume = {207},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a2/}
}
TY - JOUR AU - Yu. M. Dyukarev TI - Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem JO - Sbornik. Mathematics PY - 2016 SP - 519 EP - 536 VL - 207 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a2/ LA - en ID - SM_2016_207_4_a2 ER -
Yu. M. Dyukarev. Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 519-536. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a2/
[1] M. G. Krein, “Osnovnye polozheniya teorii predstavleniya ermitovykh operatorov s indeksom defekta $(m,m)$”, Ukr. matem. zhurn., 1:2 (1949), 3–66 ; M. G. Krein, “Fundamental aspects of the representation theory of Hermitian operators with deficiency index $(m,m)$”, Amer. Math. Soc. Transl. Ser. 2, 97, Amer. Math. Soc., Providence, RI, 1971, 75–143 | MR | Zbl
[2] M. G. Krein, “Beskonechnye $J$ matritsy i matrichnaya problema momentov”, Dokl. AN SSSR, 69:3 (1949), 125–128 | MR | Zbl
[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965, 798 pp. ; Yu. M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators, Transl. Math. Monogr., 17, Amer. Math. Soc., Providence, RI, 1968, ix+809 pp. | MR | Zbl | MR | Zbl
[4] A. I. Aptekarev, E. M. Nikishin, “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Matem. sb., 121(163):3(7) (1983), 327–358 ; A. I. Aptekarev, E. M. Nikishin, “The scattering problem for a discrete Sturm–Liouville operator”, Math. USSR-Sb., 49:2 (1984), 325–355 | MR | Zbl | DOI
[5] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. ; N. I. Akhiezer, The classical moment problem and some related questions in analysis, Univ. Math. Monogr., Oliver Boyd, Edinburgh–London, 1965, x+253 pp. | MR | Zbl | Zbl
[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988, 256 pp. ; E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | Zbl | MR | Zbl
[7] B. Simon, “The classical moment problem as a self-adjoint finite differense operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl
[8] V. I. Kogan, “Ob operatorakh, porozhdennykh $l_p$-matritsami v sluchae maksimalnykh indeksov defekta”, Teoriya funktsii, funkts. analiz i ikh prilozh., 1970, no. 11, 103–107 | MR | Zbl
[9] Yu. M. Dyukarev, “O defektnykh chislakh simmetricheskikh operatorov, porozhdennykh blochnymi matritsami Yakobi”, Matem. sb., 197:8 (2006), 73–100 | DOI | MR | Zbl
[10] Yu. M. Dyukarev, “Primery blochnykh matrits Yakobi, porozhdayuschikh simmetricheskie operatory s lyubymi vozmozhnymi defektnymi chislami”, Matem. sb., 201:12 (2010), 83–92 | DOI | MR | Zbl
[11] I. V. Kovalishina, V. P. Potapov, “Indefinitnaya metrika v probleme Nevanlinny–Pika”, Dokl. AN Arm.SSR, 59:1 (1974), 17–22 ; I. V. Kovalishina, V. P. Potapov, “An indefinite metric in the Nevanlinna–Pick problem”, Amer. Math. Soc. Transl. Ser. 2, 138, Amer. Math. Soc., Providence, RI, 1988, 15–19 | MR | Zbl
[12] I. V. Kovalishina, “Analiticheskaya teoriya odnogo klassa interpolyatsionnykh zadach”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 455–497 ; I. V. Kovalishina, “Analytic theory of a class of interpolation problems”, Math. USSR-Izv., 22:3 (1984), 419–463 | MR | Zbl | DOI
[13] C. Berg, “The matrix moment problem”, Coimbra lecture notes on orthogonal polynomials, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., New York, 2008, 1–57 | Zbl
[14] Yu. M. Dyukarev, “O kriteriyakh neopredelennosti matrichnoi problemy momentov Stiltesa”, Matem. zametki, 75:1 (2004), 71–88 | DOI | MR | Zbl
[15] Yu. M. Dyukarev, “Obobschennyi kriterii Stiltesa polnoi neopredelennosti interpolyatsionnykh zadach”, Matem. zametki, 84:1 (2008), 23–39 | DOI | MR | Zbl
[16] Yu. M. Dyukarev, A. E. Choke Rivero, “Matrichnaya versiya teoremy Gamburgera”, Matem. zametki, 91:4 (2012), 522–529 | DOI | Zbl
[17] I. Yu. Serikova, “Intervaly Veilya, assotsiirovannye s zadachei Nevanlinny–Pika v klasse $\mathcal{R}[a,b]$”, Visn. Kharkivskogo nats. un-tu, ser. «Matematika, priklad. matematika i mekhanika», 2005, no. 771, vip. 55, 37–54 | Zbl
[18] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 551 pp. ; M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems. Ideas and problems of P. L. Cebysev and A. A. Markov and their further development, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | Zbl | Zbl
[19] A. E. Choque Rivero, “On Dyukarev's resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials”, Linear Algebra Appl., 474:1 (2015), 44–109 | DOI | MR | Zbl