The annulus principle in the existence problem for a hyperbolic strange attractor
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 490-518 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A certain special class of diffeomorphisms of an ‘annulus’ (equal to the Cartesian product of a ball in $\mathbb R^k$, $k\geqslant 2$, and a circle) is investigated. The so-called annulus principle is established, that is, a list of sufficient conditions ensuring that each diffeomorphism in this class has a strange hyperbolic attractor of Smale-Williams solenoid type is given. Bibliography: 20 titles.
Keywords: hyperbolic attractor, topological mixing.
Mots-clés : annulus principle, invariant foliation, solenoid
@article{SM_2016_207_4_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {The annulus principle in the existence problem for a~hyperbolic strange attractor},
     journal = {Sbornik. Mathematics},
     pages = {490--518},
     year = {2016},
     volume = {207},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The annulus principle in the existence problem for a hyperbolic strange attractor
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 490
EP  - 518
VL  - 207
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/
LA  - en
ID  - SM_2016_207_4_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The annulus principle in the existence problem for a hyperbolic strange attractor
%J Sbornik. Mathematics
%D 2016
%P 490-518
%V 207
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/
%G en
%F SM_2016_207_4_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The annulus principle in the existence problem for a hyperbolic strange attractor. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 490-518. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/

[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | MR | Zbl

[2] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | MR | Zbl

[3] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[4] B. Hasselblatt, A. Katok, A first course in dynamics with a panorama of recent developments, Cambridge Univ. Press, Cambridge, 2003, x+424 pp. | DOI | MR | Zbl

[5] Yu. Ilyashenko, W. Li, Nonlocal bifurcations, Math. Surveys Monogr., 66, Amer. Math. Soc., Providence, RI, 1999, xiv+286 pp. | MR | MR | Zbl

[6] D. V. Turaev, L. P. Shil'nikov, “Blue sky catastrophes”, Dokl. Math., 51:3 (1995), 404–407 | MR | Zbl

[7] L. P. Shilnikov, D. V. Turaev, “Simple bifurcations leading to hyperbolic attractors”, Comput. Math. Appl., 34:2–4 (1997), 173–193 | DOI | MR | Zbl

[8] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics, v. I, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 4, World Scientific, River Edge, NJ, 1998, xxiv+392 pp. | MR | Zbl

[9] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004, 405 pp.

[10] D. V. Anosov, V. V Solodov, “Hyperbolic sets”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer-Verlag, Berlin, 1995, 10–92 | DOI | MR | MR | Zbl | Zbl

[11] J. M. Aarts, R. J. Fokkink, “The classification of solenoids”, Proc. Amer. Math. Soc., 111:4 (1991), 1161–1163 | DOI | MR | Zbl

[12] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Studies in Nonlinearity, 2nd ed., Addison-Wesley, Redwood City, CA, 1989, xviii+336 pp. | MR | Zbl

[13] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl

[14] L. P. Šilnikov, “On a Poincaré–Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI | MR | Zbl

[15] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | MR | Zbl

[16] Ya. B. Pesin, “General theory of smooth hyperbolic dynamical systems”, Dynamical systems II, Encyclopaedia Math. Sci., 2, Springer-Verlag, Berlin, 1989, 108–151 | DOI | MR | MR | Zbl

[17] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics, v. II, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Scientific, River Edge, NJ, 2001, i–xxiv and 393–957 pp. | DOI | MR | Zbl

[18] R. F. Williams, “One-dimensional non-wandering sets”, Topology, 6:4 (1967), 473–487 | DOI | MR | Zbl

[19] R. F. Williams, “Expanding attractors”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 169–203 | DOI | MR | Zbl

[20] E. V. Zhuzhoma, N. V. Isaenkova, “Zero-dimensional solenoidal base sets”, Sb. Math., 202:3 (2011), 351–372 | DOI | DOI | MR | Zbl