The annulus principle in the existence problem for a~hyperbolic strange attractor
Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 490-518

Voir la notice de l'article provenant de la source Math-Net.Ru

A certain special class of diffeomorphisms of an ‘annulus’ (equal to the Cartesian product of a ball in $\mathbb R^k$, $k\geqslant 2$, and a circle) is investigated. The so-called annulus principle is established, that is, a list of sufficient conditions ensuring that each diffeomorphism in this class has a strange hyperbolic attractor of Smale-Williams solenoid type is given. Bibliography: 20 titles.
Keywords: hyperbolic attractor, topological mixing.
Mots-clés : annulus principle, invariant foliation, solenoid
@article{SM_2016_207_4_a1,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {The annulus principle in the existence problem for a~hyperbolic strange attractor},
     journal = {Sbornik. Mathematics},
     pages = {490--518},
     publisher = {mathdoc},
     volume = {207},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The annulus principle in the existence problem for a~hyperbolic strange attractor
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 490
EP  - 518
VL  - 207
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/
LA  - en
ID  - SM_2016_207_4_a1
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The annulus principle in the existence problem for a~hyperbolic strange attractor
%J Sbornik. Mathematics
%D 2016
%P 490-518
%V 207
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/
%G en
%F SM_2016_207_4_a1
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. The annulus principle in the existence problem for a~hyperbolic strange attractor. Sbornik. Mathematics, Tome 207 (2016) no. 4, pp. 490-518. http://geodesic.mathdoc.fr/item/SM_2016_207_4_a1/