Mots-clés : dyadic product group, $\mathscr{U}$-set
@article{SM_2016_207_3_a6,
author = {M. G. Plotnikov and Yu. A. Plotnikova},
title = {Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in {a~Haar} system},
journal = {Sbornik. Mathematics},
pages = {444--457},
year = {2016},
volume = {207},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a6/}
}
TY - JOUR
AU - M. G. Plotnikov
AU - Yu. A. Plotnikova
TI - Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a Haar system
JO - Sbornik. Mathematics
PY - 2016
SP - 444
EP - 457
VL - 207
IS - 3
UR - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a6/
LA - en
ID - SM_2016_207_3_a6
ER -
M. G. Plotnikov; Yu. A. Plotnikova. Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a Haar system. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 444-457. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a6/
[1] N. K. Bary, A treatise on trigonometric series, v. I, II, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl
[2] N. N. Kholshchevnikova, “Less-than-continuum sum of closed U-sets”, Moscow Univ. Math. Bull., 36:1 (1981), 60–64 | Zbl
[3] A. S. Kechris, A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser., 128, Cambridge Univ. Press, Cambridge, 1987, viii+367 pp. | DOI | MR | Zbl
[4] G. M. Mushegyan, “O mnozhestvakh edinstvennosti dlya sistemy Khaara”, Izv. AN Arm. SSR. Ser. matem., 2:6 (1967), 350–361 | MR | Zbl
[5] V. A. Skvortsov, “Uniqueness sets for multiple Haar series”, Math. Notes, 14:6 (1973), 1011–1016 | DOI | MR | Zbl
[6] W. R. Wade, “Sets of uniqueness for Haar series”, Acta Math. Acad. Sci. Hungar., 30:3-4 (1977), 265–281 | DOI | MR | Zbl
[7] M. G. Plotnikov, “Quasi-measures, Hausdorff $p$-measures and Walsh and Haar series”, Izv. Math., 74:4 (2010), 819–848 | DOI | DOI | MR | Zbl
[8] V. A. Skvortsov, A. A. Talalyan, “Some uniqueness questions of multiple Haar and trigonometric series”, Math. Notes, 46:2 (1989), 646–653 | DOI | MR | Zbl
[9] G. E. Tkebuchava, “On the divergence of spherical sums of double Fourier–Haar series”, Anal. Math., 20:2 (1994), 147–153 | DOI | MR | Zbl
[10] V. Skvortsov, “Henstock–Kurzweil type integrals in $\mathscr{P}$-adic harmonic analysis”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20:2 (2004), 207–224 | MR | Zbl
[11] R. D. Getsadze, “On divergence of the general terms of the double Fourier–Haar series”, Arch. Math. (Basel), 86:4 (2006), 331–339 | DOI | MR | Zbl
[12] G. G. Oniani, “The convergence of double Fourier–Haar series over homothetic copies of sets”, Sb. Math., 205:7 (2014), 983–1003 | DOI | DOI | MR | Zbl
[13] K. Yoneda, “A generalized measure concentrated on a closed set of measure zero”, Acta Math. Hungar., 83:4 (1999), 327–338 | DOI | MR | Zbl
[14] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[15] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | MR | Zbl | Zbl
[16] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Ltd., Bristol, 1990, x+560 pp. | MR | Zbl
[17] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. 1, 2, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl
[18] T. P. Lukashenko, “On recursive decompositions of measures”, Math. Notes, 91:5 (2012), 671–679 | DOI | DOI | MR | Zbl