Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a~Haar system
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 444-457

Voir la notice de l'article provenant de la source Math-Net.Ru

New properties of finitely additive set functions (quasi-measures) and Borel measures on dyadic product groups $\mathbb{G}^m$ are established. The results obtained are applied to the theory of series in Haar systems — for example, for a broad family of classes of multiple Haar series on $\mathbb{G}^m$, a countable union of closed uniqueness sets is shown to be a uniqueness set too. Bibliography: 18 titles.
Keywords: multiple Haar series, quasi-measure, Borel measure.
Mots-clés : dyadic product group, $\mathscr{U}$-set
@article{SM_2016_207_3_a6,
     author = {M. G. Plotnikov and Yu. A. Plotnikova},
     title = {Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in {a~Haar} system},
     journal = {Sbornik. Mathematics},
     pages = {444--457},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a6/}
}
TY  - JOUR
AU  - M. G. Plotnikov
AU  - Yu. A. Plotnikova
TI  - Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a~Haar system
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 444
EP  - 457
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a6/
LA  - en
ID  - SM_2016_207_3_a6
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%A Yu. A. Plotnikova
%T Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a~Haar system
%J Sbornik. Mathematics
%D 2016
%P 444-457
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a6/
%G en
%F SM_2016_207_3_a6
M. G. Plotnikov; Yu. A. Plotnikova. Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a~Haar system. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 444-457. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a6/