The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 418-443
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove an $L^2$-estimate for the homogenization of an elliptic operator $A_\varepsilon$ in a domain $\Omega$ with a Neumann boundary condition on the boundary $\partial\Omega$. The coefficients of the operator $A_\varepsilon$ are rapidly oscillating over different groups of variables with periods of different orders of smallness as $\varepsilon\to 0$. We assume minimal regularity of the data, which makes it possible to impart to the result the meaning of an estimate in the operator $(L^2(\Omega)\to L^2(\Omega))$-norm for the difference of the resolvents of the original and homogenized problems. We also find an approximation to the resolvent of the original problem in the operator $(L^2(\Omega)\to H^1(\Omega))$-norm.
Bibliography: 24 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
multiscale homogenization, operator estimates for homogenization, Steklov smoothing.
                    
                    
                    
                  
                
                
                @article{SM_2016_207_3_a5,
     author = {S. E. Pastukhova},
     title = {The {Neumann} problem for elliptic equations with multiscale coefficients: operator estimates for homogenization},
     journal = {Sbornik. Mathematics},
     pages = {418--443},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/}
}
                      
                      
                    TY - JOUR AU - S. E. Pastukhova TI - The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization JO - Sbornik. Mathematics PY - 2016 SP - 418 EP - 443 VL - 207 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/ LA - en ID - SM_2016_207_3_a5 ER -
S. E. Pastukhova. The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 418-443. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/
