The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 418-443

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an $L^2$-estimate for the homogenization of an elliptic operator $A_\varepsilon$ in a domain $\Omega$ with a Neumann boundary condition on the boundary $\partial\Omega$. The coefficients of the operator $A_\varepsilon$ are rapidly oscillating over different groups of variables with periods of different orders of smallness as $\varepsilon\to 0$. We assume minimal regularity of the data, which makes it possible to impart to the result the meaning of an estimate in the operator $(L^2(\Omega)\to L^2(\Omega))$-norm for the difference of the resolvents of the original and homogenized problems. We also find an approximation to the resolvent of the original problem in the operator $(L^2(\Omega)\to H^1(\Omega))$-norm. Bibliography: 24 titles.
Keywords: multiscale homogenization, operator estimates for homogenization, Steklov smoothing.
@article{SM_2016_207_3_a5,
     author = {S. E. Pastukhova},
     title = {The {Neumann} problem for elliptic equations with multiscale coefficients: operator estimates for homogenization},
     journal = {Sbornik. Mathematics},
     pages = {418--443},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 418
EP  - 443
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/
LA  - en
ID  - SM_2016_207_3_a5
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
%J Sbornik. Mathematics
%D 2016
%P 418-443
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/
%G en
%F SM_2016_207_3_a5
S. E. Pastukhova. The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 418-443. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/