@article{SM_2016_207_3_a5,
author = {S. E. Pastukhova},
title = {The {Neumann} problem for elliptic equations with multiscale coefficients: operator estimates for homogenization},
journal = {Sbornik. Mathematics},
pages = {418--443},
year = {2016},
volume = {207},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/}
}
TY - JOUR AU - S. E. Pastukhova TI - The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization JO - Sbornik. Mathematics PY - 2016 SP - 418 EP - 443 VL - 207 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/ LA - en ID - SM_2016_207_3_a5 ER -
S. E. Pastukhova. The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 418-443. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/
[1] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl
[2] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl
[3] V. V. Zhikov, “Some estimates from homogenization theory”, Dokl. Math., 73:1 (2006), 96–99 | DOI | MR | Zbl
[4] S. E. Pastukhova, “Some estimates from homogenized elasticity problems”, Dokl. Math., 73:1 (2006), 102–106 | DOI | MR | Zbl
[5] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[6] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl
[7] V. V. Zhikov, S. V. Tikhomirova, “Ob operatornykh otsenkakh v nesimmetricheskikh zadachakh usredneniya”, Suzdalskaya konferentsiya – 1, Sovremennaya matematika i ee prilozheniya, 33, In-t kibernetiki NAN Gruzii, Tbilisi, 2005, 124–128
[8] G. Cardone, S. E. Pastukhova, V. V. Zhikov, “Some estimates for non-linear homogenization”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29:1 (2005), 101–110 | MR
[9] V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Siberian Math. J., 49:1 (2008), 80–101 | DOI | MR | Zbl
[10] S. E. Pastukhova, S. V. Tikhomirova, “Elliptic equation with nonsymmetric matrix: averaging of the “variational solutions””, Math. Notes, 81:4 (2007), 560–565 | DOI | DOI | MR | Zbl
[11] S. E. Pastukhova, “Operator estimates in nonlinear problems of reiterated homogenization”, Proc. Steklov Inst. Math., 261 (2008), 214–228 | DOI | MR | Zbl
[12] S. E. Pastukhova, R. N. Tikhomirov, “Operator estimates in reiterated and locally periodic homogenization”, Dokl. Math., 76:1 (2007), 548–553 | DOI | MR | Zbl
[13] S. E. Pastukhova, “Estimates in homogenization of parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66:3-4 (2010), 207–228 | DOI | MR | Zbl
[14] S. E. Pastukhova, “Approximation of the exponential of a diffusion operator with multiscale coefficients”, Funct. Anal. Appl., 48:3 (2014), 183–197 | DOI | DOI | Zbl
[15] S. E. Pastukhova, “The Dirichlet problem for elliptic equations with multiscale coefficients. Operator estimates for homogenization”, J. Math. Sci. (N. Y.), 193:2 (2013), 283–300 | DOI | MR | Zbl
[16] T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476 | DOI | MR | Zbl
[17] T. A. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493 | DOI | MR | Zbl
[18] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl
[19] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | MR | Zbl | Zbl
[20] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | MR | Zbl | Zbl
[21] G. Griso, “Interior error estimate for periodic homogenization”, Anal. Appl. (Singap.), 4:1 (2006), 61–79 | DOI | MR | Zbl
[22] C. E. Kenig, Fanghua Lin, Zhongwei Shen, “Convergence rates in $L^2$ for elliptic homogenization problems”, Arch. Ration. Mech. Anal., 203:3 (2012), 1009–1036 | DOI | MR | Zbl
[23] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl
[24] S. Pastukhova, R. Tikhomirov, On homogenization estimates in Neuman boundary value problem for an elliptic equation with multiscale coefficients, arXiv: abs/1512.06396