The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 418-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an $L^2$-estimate for the homogenization of an elliptic operator $A_\varepsilon$ in a domain $\Omega$ with a Neumann boundary condition on the boundary $\partial\Omega$. The coefficients of the operator $A_\varepsilon$ are rapidly oscillating over different groups of variables with periods of different orders of smallness as $\varepsilon\to 0$. We assume minimal regularity of the data, which makes it possible to impart to the result the meaning of an estimate in the operator $(L^2(\Omega)\to L^2(\Omega))$-norm for the difference of the resolvents of the original and homogenized problems. We also find an approximation to the resolvent of the original problem in the operator $(L^2(\Omega)\to H^1(\Omega))$-norm. Bibliography: 24 titles.
Keywords: multiscale homogenization, operator estimates for homogenization, Steklov smoothing.
@article{SM_2016_207_3_a5,
     author = {S. E. Pastukhova},
     title = {The {Neumann} problem for elliptic equations with multiscale coefficients: operator estimates for homogenization},
     journal = {Sbornik. Mathematics},
     pages = {418--443},
     year = {2016},
     volume = {207},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 418
EP  - 443
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/
LA  - en
ID  - SM_2016_207_3_a5
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization
%J Sbornik. Mathematics
%D 2016
%P 418-443
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/
%G en
%F SM_2016_207_3_a5
S. E. Pastukhova. The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 418-443. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a5/

[1] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl

[2] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl

[3] V. V. Zhikov, “Some estimates from homogenization theory”, Dokl. Math., 73:1 (2006), 96–99 | DOI | MR | Zbl

[4] S. E. Pastukhova, “Some estimates from homogenized elasticity problems”, Dokl. Math., 73:1 (2006), 102–106 | DOI | MR | Zbl

[5] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[6] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[7] V. V. Zhikov, S. V. Tikhomirova, “Ob operatornykh otsenkakh v nesimmetricheskikh zadachakh usredneniya”, Suzdalskaya konferentsiya – 1, Sovremennaya matematika i ee prilozheniya, 33, In-t kibernetiki NAN Gruzii, Tbilisi, 2005, 124–128

[8] G. Cardone, S. E. Pastukhova, V. V. Zhikov, “Some estimates for non-linear homogenization”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29:1 (2005), 101–110 | MR

[9] V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Siberian Math. J., 49:1 (2008), 80–101 | DOI | MR | Zbl

[10] S. E. Pastukhova, S. V. Tikhomirova, “Elliptic equation with nonsymmetric matrix: averaging of the “variational solutions””, Math. Notes, 81:4 (2007), 560–565 | DOI | DOI | MR | Zbl

[11] S. E. Pastukhova, “Operator estimates in nonlinear problems of reiterated homogenization”, Proc. Steklov Inst. Math., 261 (2008), 214–228 | DOI | MR | Zbl

[12] S. E. Pastukhova, R. N. Tikhomirov, “Operator estimates in reiterated and locally periodic homogenization”, Dokl. Math., 76:1 (2007), 548–553 | DOI | MR | Zbl

[13] S. E. Pastukhova, “Estimates in homogenization of parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66:3-4 (2010), 207–228 | DOI | MR | Zbl

[14] S. E. Pastukhova, “Approximation of the exponential of a diffusion operator with multiscale coefficients”, Funct. Anal. Appl., 48:3 (2014), 183–197 | DOI | DOI | Zbl

[15] S. E. Pastukhova, “The Dirichlet problem for elliptic equations with multiscale coefficients. Operator estimates for homogenization”, J. Math. Sci. (N. Y.), 193:2 (2013), 283–300 | DOI | MR | Zbl

[16] T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476 | DOI | MR | Zbl

[17] T. A. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493 | DOI | MR | Zbl

[18] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl

[19] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | MR | Zbl | Zbl

[20] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | MR | Zbl | Zbl

[21] G. Griso, “Interior error estimate for periodic homogenization”, Anal. Appl. (Singap.), 4:1 (2006), 61–79 | DOI | MR | Zbl

[22] C. E. Kenig, Fanghua Lin, Zhongwei Shen, “Convergence rates in $L^2$ for elliptic homogenization problems”, Arch. Ration. Mech. Anal., 203:3 (2012), 1009–1036 | DOI | MR | Zbl

[23] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl

[24] S. Pastukhova, R. Tikhomirov, On homogenization estimates in Neuman boundary value problem for an elliptic equation with multiscale coefficients, arXiv: abs/1512.06396