On the limit distributions of the degrees of vertices in~configuration graphs with a~bounded number of edges
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 400-417

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of a configuration graph on $N$ vertices is considered in which the degrees of the vertices are distributed identically and independently according to the law $\mathbf P\{\xi=k\}=k^{-\tau}-(k+1)^{-\tau}$, $k=1,2,\dots$, $\tau>0$, and the number of edges is no greater than $n$. Limit theorems for the number of vertices of a particular degree and for the maximum vertex degree as $N,n\to\infty$ are established. Bibliography: 18 titles.
Keywords: the number of vertices of a particular degree, the maximum vertex degree.
Mots-clés : configuration graph, limit distribution
@article{SM_2016_207_3_a4,
     author = {Yu. L. Pavlov and E. V. Khvorostyanskaya},
     title = {On the limit distributions of the degrees of vertices in~configuration graphs with a~bounded number of edges},
     journal = {Sbornik. Mathematics},
     pages = {400--417},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a4/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
AU  - E. V. Khvorostyanskaya
TI  - On the limit distributions of the degrees of vertices in~configuration graphs with a~bounded number of edges
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 400
EP  - 417
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a4/
LA  - en
ID  - SM_2016_207_3_a4
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%A E. V. Khvorostyanskaya
%T On the limit distributions of the degrees of vertices in~configuration graphs with a~bounded number of edges
%J Sbornik. Mathematics
%D 2016
%P 400-417
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a4/
%G en
%F SM_2016_207_3_a4
Yu. L. Pavlov; E. V. Khvorostyanskaya. On the limit distributions of the degrees of vertices in~configuration graphs with a~bounded number of edges. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 400-417. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a4/