Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 358-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A topological classification, up to Liouville (leafwise) equivalence of integrable Hamiltonian systems given by flows with a smooth potential on two-dimensional surfaces of revolution is presented. It is shown that the restrictions of such systems to three-dimensional isoenergy surfaces can be modelled by the geodesic flows (without potential) of certain surfaces of revolution. It is also shown that in many important cases the systems under consideration are equivalent to other well-known mechanical systems. Bibliography: 29 titles.
Keywords: integrable Hamiltonian systems, surfaces of revolution, lattices of action variables.
Mots-clés : Fomenko-Zieschang invariant
@article{SM_2016_207_3_a3,
     author = {E. O. Kantonistova},
     title = {Topological classification of integrable {Hamiltonian} systems in a~potential field on surfaces of revolution},
     journal = {Sbornik. Mathematics},
     pages = {358--399},
     year = {2016},
     volume = {207},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/}
}
TY  - JOUR
AU  - E. O. Kantonistova
TI  - Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 358
EP  - 399
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/
LA  - en
ID  - SM_2016_207_3_a3
ER  - 
%0 Journal Article
%A E. O. Kantonistova
%T Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution
%J Sbornik. Mathematics
%D 2016
%P 358-399
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/
%G en
%F SM_2016_207_3_a3
E. O. Kantonistova. Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 358-399. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/

[1] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[2] M. Yu. Ivochkin, “Topological analysis of the motion of an ellipsoid on a smooth plane”, Sb. Math., 199:6 (2008), 871–890 | DOI | DOI | MR | Zbl

[3] G. M. Sechkin, Topologiya dinamiki neodnorodnogo ellipsoida vrascheniya na gladkoi ploskosti, Diplomnaya rabota, MGU, M., 2015

[4] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topology and stability of integrable systems”, Russian Math. Surveys, 65:2 (2010), 259–318 | DOI | DOI | MR | Zbl

[5] M. Audin, Hamiltonian systems and their integrability, SMF/AMS Texts Monogr., 15, Amer. Math. Soc., Providence, RI; Soc. Math. France, Paris, 2008, xii+149 pp. | MR | Zbl

[6] A. T. Fomenko, “A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems”, Math. USSR-Izv., 39:1 (1992), 731–759 | DOI | MR | Zbl

[7] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl

[8] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl

[9] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[10] A. T. Fomenko, P. V. Morozov, “Some new results in topological classification of integrable systems in rigid body dynamics”, Contemporary geometry and related topics (Belgrade, Yugoslavia, 2002), World Sci. Publ., River Edge, NJ, 2004, 201–222 | DOI | MR | Zbl

[11] Topological methods in the theory of integrable Hamiltonian systems, eds. A. V. Bolsinov, A. T. Fomenko, A. A. Oshemkov, Cambridge Scientific Publ., Cambridge, 2006, viii+330 pp. | MR | Zbl

[12] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | DOI | MR | Zbl

[13] E. A. Kudryavtseva, A. T. Fomenko, “Symmetry groups of nice Morse functions on surfaces”, Dokl. Math., 86:2 (2012), 691–693 | DOI | MR | Zbl

[14] A. T. Fomenko, A. Yu. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21 | DOI | MR | Zbl

[15] A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975 | DOI | MR | Zbl

[16] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[17] A. T. Fomenko, S. S. Nikolaenko, “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[18] A. T. Fomenko, E. O. Kantonistova, “Topological classification of geodesic flows on revolution 2-surfaces wih potential”, Continuous and disturbed sytems II. Theory and Applications, Stud. Syst. Decis. Control, 30, Springer, Cham, 2015, 11–27 | DOI | MR

[19] A. V. Bolsinov, A. T. Fomenko, Geometriya i topologiya integriruemykh geodezicheskikh potokov na poverkhnostyakh, Biblioteka “Regulyarnaya i khaoticheskaya dinamika”, 2, M., Editorial URSS, 1999, 328 pp.

[20] A. V. Bolsinov, B. Jovanović, “Integrable geodesic flows on Riemmannian manifolds: construction and obstructions”, Contemporary geometry and related topics, World Sci. Publ., River Edge, NJ, 2004, 57–103 | DOI | MR | Zbl

[21] N. V. Korovina, “Orbital equivalence of two classical problems in the dynamics of a rigid body”, Dokl. Math., 62:3 (2000), 345–347 | MR | Zbl

[22] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | MR | MR | Zbl

[23] M. V. Novikov, Bifurkatsionnye diagrammy naturalnykh mekhanicheskikh sistem s dvumya stepenyami svobody, invariantnykh otnositelno vraschenii, Diplomnaya rabota, MGU, M., 2012

[24] M. Engman, “A note on isometric embeddings of surfaces of revolution”, Amer. Math. Monthly, 111:3 (2004), 251–255 | DOI | Zbl

[25] E. A. Kudryavtseva, D. A. Fedoseev, “Mechanical systems with closed orbits on manifolds of revolution”, Sb. Math., 206:5 (2015), 718–737 | DOI | DOI | MR | Zbl

[26] E. O. Kantonistova, “Integer lattices of the action variables for the generalized Lagrange case”, Moscow Univ. Math. Bull., 67:1 (2012), 36–40 | DOI | MR | Zbl

[27] E. O. Kantonistova, “Integer lattices of action-angle variables for “spherical pendulum” system”, Moscow Univ. Math. Bull., 69:4 (2014), 135–147 | DOI | Zbl

[28] E. O. Kantonistova, “Liuvilleva klassifikatsiya integriruemykh gamiltonovykh sistem na poverkhnostyakh vrascheniya”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 2015, no. 5, 41–44

[29] P. K. Rashevskii, Kurs differentsialnoi geometrii, 3-e izd., GITTL, M.–L., 1950, 428 pp. | Zbl