Topological classification of integrable Hamiltonian systems in a~potential field on surfaces of revolution
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 358-399

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological classification, up to Liouville (leafwise) equivalence of integrable Hamiltonian systems given by flows with a smooth potential on two-dimensional surfaces of revolution is presented. It is shown that the restrictions of such systems to three-dimensional isoenergy surfaces can be modelled by the geodesic flows (without potential) of certain surfaces of revolution. It is also shown that in many important cases the systems under consideration are equivalent to other well-known mechanical systems. Bibliography: 29 titles.
Keywords: integrable Hamiltonian systems, surfaces of revolution, lattices of action variables.
Mots-clés : Fomenko-Zieschang invariant
@article{SM_2016_207_3_a3,
     author = {E. O. Kantonistova},
     title = {Topological classification of integrable {Hamiltonian} systems in a~potential field on surfaces of revolution},
     journal = {Sbornik. Mathematics},
     pages = {358--399},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/}
}
TY  - JOUR
AU  - E. O. Kantonistova
TI  - Topological classification of integrable Hamiltonian systems in a~potential field on surfaces of revolution
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 358
EP  - 399
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/
LA  - en
ID  - SM_2016_207_3_a3
ER  - 
%0 Journal Article
%A E. O. Kantonistova
%T Topological classification of integrable Hamiltonian systems in a~potential field on surfaces of revolution
%J Sbornik. Mathematics
%D 2016
%P 358-399
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/
%G en
%F SM_2016_207_3_a3
E. O. Kantonistova. Topological classification of integrable Hamiltonian systems in a~potential field on surfaces of revolution. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 358-399. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a3/