Compact homogeneous spaces of reductive Lie groups and spaces close to them
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 342-357

Voir la notice de l'article provenant de la source Math-Net.Ru

We study compact homogeneous spaces of reductive Lie groups, and also some of their analogues and generalizations (quasicompact and plesiocompact homogeneous spaces of these Lie groups). We give a description of the structure of (plesio-)uniform subgroups in reductive Lie groups. The corresponding homogeneous spaces for which the stationary subgroup has an extremal dimension (close to the minimal or maximal possible one) are described. The fundamental groups of (plesio)compact homogeneous spaces of arbitrary reductive and semisimple Lie groups are characterized. Bibliography: 16 titles.
Keywords: reductive Lie group, compact homogeneous space, lattice.
@article{SM_2016_207_3_a2,
     author = {V. V. Gorbatsevich},
     title = {Compact homogeneous spaces of reductive {Lie} groups and spaces close to them},
     journal = {Sbornik. Mathematics},
     pages = {342--357},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Compact homogeneous spaces of reductive Lie groups and spaces close to them
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 342
EP  - 357
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/
LA  - en
ID  - SM_2016_207_3_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Compact homogeneous spaces of reductive Lie groups and spaces close to them
%J Sbornik. Mathematics
%D 2016
%P 342-357
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/
%G en
%F SM_2016_207_3_a2
V. V. Gorbatsevich. Compact homogeneous spaces of reductive Lie groups and spaces close to them. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 342-357. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/