Compact homogeneous spaces of reductive Lie groups and spaces close to them
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 342-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study compact homogeneous spaces of reductive Lie groups, and also some of their analogues and generalizations (quasicompact and plesiocompact homogeneous spaces of these Lie groups). We give a description of the structure of (plesio-)uniform subgroups in reductive Lie groups. The corresponding homogeneous spaces for which the stationary subgroup has an extremal dimension (close to the minimal or maximal possible one) are described. The fundamental groups of (plesio)compact homogeneous spaces of arbitrary reductive and semisimple Lie groups are characterized. Bibliography: 16 titles.
Keywords: reductive Lie group, compact homogeneous space, lattice.
@article{SM_2016_207_3_a2,
     author = {V. V. Gorbatsevich},
     title = {Compact homogeneous spaces of reductive {Lie} groups and spaces close to them},
     journal = {Sbornik. Mathematics},
     pages = {342--357},
     year = {2016},
     volume = {207},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Compact homogeneous spaces of reductive Lie groups and spaces close to them
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 342
EP  - 357
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/
LA  - en
ID  - SM_2016_207_3_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Compact homogeneous spaces of reductive Lie groups and spaces close to them
%J Sbornik. Mathematics
%D 2016
%P 342-357
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/
%G en
%F SM_2016_207_3_a2
V. V. Gorbatsevich. Compact homogeneous spaces of reductive Lie groups and spaces close to them. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 342-357. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a2/

[1] V. V. Gorbatsevich, “Plesiocompact homogeneous spaces”, Siberian Math. J., 30:2 (1989), 217–226 ; “On plesiocompact homogeneous spaces”, 32:2 (1991), 186–196 | DOI | DOI | MR | MR | Zbl | Zbl

[2] V. V. Gorbatsevich, “Compact homogeneous spaces and their generalizations”, J. Math. Sci. (N. Y.), 153:6 (2008), 763–798 | DOI | MR | Zbl

[3] V. V. Gorbatsevich, “Lie groups transitive on compact space forms of reductive Lie groups”, Soviet Math. (Iz. VUZ), 31:6 (1987), 36–44 | MR | Zbl

[4] A. L. Onishchik, “On Lie groups transitive on compact manifolds”, Amer. Math. Soc. Transl. Ser. 2, 73, Amer. Math. Soc., Providence, R.I., 1968, 59–72 | MR | Zbl

[5] A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Lie groups and Lie algebras III. Structure of Lie groups and Lie algebras, Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, iv+248 pp. | MR | MR | Zbl | Zbl

[6] E. Ya. Vishik, “Compact homogeneous spaces and invariant affine connections on them”, Soviet Math. (Iz. VUZ), 19:10 (1975), 73–76 | MR | Zbl

[7] C. C. Moore, “Cocompact subgroups of semi-simple Lie groups”, J. Reine Angew. Math., 1984:350 (1984), 173–177 | DOI | MR | Zbl

[8] M. Goto, Hsien-Chung Wang, “Non-discrete uniform subgroups of semisimple Lie groups”, Math. Ann., 198:2 (1972), 259–286 | DOI | MR | Zbl

[9] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergeb. Math. Grenzgeb., 68, Springer-Verlag, New York–Heidelberg, 1972, ix+227 pp. | MR | MR | Zbl

[10] G. D. Mostow, “Homogeneous spaces with finite invariant measure”, Ann. of Math. (2), 75 (1962), 17–37 | DOI | MR | Zbl

[11] V. V. Gorbatsevich, “On quasicompact homogeneous spaces”, Siberian Math. J., 54:2 (2013), 231–242 | DOI | MR | Zbl

[12] G. D. Mostow, “On the topology of homogeneous spaces of finite measure”, Symposia Mathematica, Convegno sui gruppi topologici e gruppi di Lie (INDAM, Roma, Gennaio, 1974), v. 16, Academic Press, London, 1975, 375–398 | MR | Zbl

[13] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | DOI | MR | Zbl

[14] G. D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–637 | DOI | MR | Zbl

[15] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–235 ; II, 27, No 5, 1986, 38–49 | MR | MR | Zbl | Zbl | MR | Zbl

[16] V. V. Gorbatsevich, “Compact homogeneous spaces with semisimple fundamental group”, Siberian Math. J., 22:1 (1981), 34–49 ; II, 27:5 (1986), 660–669 | DOI | DOI | MR | MR | Zbl | Zbl