Automorphisms of threefolds that can be represented as an intersection of two quadrics
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 315-330

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any $G$-del Pezzo threefold of degree $4$, except for a one-parameter family and four distinguished cases, can be equivariantly reconstructed to the projective space $\mathbb P^3$, a quadric $Q\subset\mathbb P^4$, a $G$-conic bundle or a del Pezzo fibration. We also show that one of these four distinguished varieties is birationally rigid with respect to an index $2$ subgroup of its automorphism group. Bibliography: 15 titles.
Keywords: del Pezzo varieties, automorphism groups, birational rigidity.
@article{SM_2016_207_3_a0,
     author = {A. Avilov},
     title = {Automorphisms of threefolds that can be represented as an intersection of two quadrics},
     journal = {Sbornik. Mathematics},
     pages = {315--330},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/}
}
TY  - JOUR
AU  - A. Avilov
TI  - Automorphisms of threefolds that can be represented as an intersection of two quadrics
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 315
EP  - 330
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/
LA  - en
ID  - SM_2016_207_3_a0
ER  - 
%0 Journal Article
%A A. Avilov
%T Automorphisms of threefolds that can be represented as an intersection of two quadrics
%J Sbornik. Mathematics
%D 2016
%P 315-330
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/
%G en
%F SM_2016_207_3_a0
A. Avilov. Automorphisms of threefolds that can be represented as an intersection of two quadrics. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 315-330. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/