Automorphisms of threefolds that can be represented as an intersection of two quadrics
Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 315-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that any $G$-del Pezzo threefold of degree $4$, except for a one-parameter family and four distinguished cases, can be equivariantly reconstructed to the projective space $\mathbb P^3$, a quadric $Q\subset\mathbb P^4$, a $G$-conic bundle or a del Pezzo fibration. We also show that one of these four distinguished varieties is birationally rigid with respect to an index $2$ subgroup of its automorphism group. Bibliography: 15 titles.
Keywords: del Pezzo varieties, automorphism groups, birational rigidity.
@article{SM_2016_207_3_a0,
     author = {A. Avilov},
     title = {Automorphisms of threefolds that can be represented as an intersection of two quadrics},
     journal = {Sbornik. Mathematics},
     pages = {315--330},
     year = {2016},
     volume = {207},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/}
}
TY  - JOUR
AU  - A. Avilov
TI  - Automorphisms of threefolds that can be represented as an intersection of two quadrics
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 315
EP  - 330
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/
LA  - en
ID  - SM_2016_207_3_a0
ER  - 
%0 Journal Article
%A A. Avilov
%T Automorphisms of threefolds that can be represented as an intersection of two quadrics
%J Sbornik. Mathematics
%D 2016
%P 315-330
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/
%G en
%F SM_2016_207_3_a0
A. Avilov. Automorphisms of threefolds that can be represented as an intersection of two quadrics. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 315-330. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/

[1] D. Abramovich, Jianhua Wang, “Equivariant resolution of singularities in characteristic $0$”, Math. Res. Lett., 4:2-3 (1997), 427–433 | DOI | MR | Zbl

[2] S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[3] T. Fujita, “On singular Del Pezzo varieties”, Algebraic geometry (L'Aquila, 1988), Lecture Notes in Math., 1417, Springer, Berlin, 1990, 117–128 | DOI | MR | Zbl

[4] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl

[5] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl

[6] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank $3$”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl

[7] I. Cheltsov, C. Shramov, “Five embeddings of one simple group”, Trans. Amer. Math. Soc., 366:3 (2014), 1289–1331 | DOI | MR | Zbl

[8] I. Cheltsov, C. Shramov, “Three embeddings of the Klein simple group into the Cremona group of rank three”, Transform. Groups, 17:2 (2012), 303–350 | DOI | MR | Zbl

[9] Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank $3$”, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 327–338 | DOI | MR | Zbl

[10] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | MR | Zbl

[11] M. Reid, “Minimal models of canonical $3$-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 | MR | Zbl

[12] W. V. D. Hodge, D. Pedoe, Methods of algebraic geometry, v. II, Cambridge Univ. Press, Cambridge, 1952, x+394 pp. | MR | Zbl

[13] A. Corti, “Singularities of linear systems and $3$-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | DOI | MR | Zbl

[14] J. Kollár, K. E. Smith, A. Corti, Rational and nearly rational varieties, Cambridge Stud. Adv. Math., 92, Cambridge Univ. Press, Cambridge, 2004, vi+235 pp. | DOI | MR | Zbl

[15] N. Tziolas, “Terminal $3$-fold divisorial contractions of a surface to a curve. I”, Compositio Math., 139:3 (2003), 239–261 | DOI | MR | Zbl