@article{SM_2016_207_3_a0,
author = {A. Avilov},
title = {Automorphisms of threefolds that can be represented as an intersection of two quadrics},
journal = {Sbornik. Mathematics},
pages = {315--330},
year = {2016},
volume = {207},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/}
}
A. Avilov. Automorphisms of threefolds that can be represented as an intersection of two quadrics. Sbornik. Mathematics, Tome 207 (2016) no. 3, pp. 315-330. http://geodesic.mathdoc.fr/item/SM_2016_207_3_a0/
[1] D. Abramovich, Jianhua Wang, “Equivariant resolution of singularities in characteristic $0$”, Math. Res. Lett., 4:2-3 (1997), 427–433 | DOI | MR | Zbl
[2] S. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl
[3] T. Fujita, “On singular Del Pezzo varieties”, Algebraic geometry (L'Aquila, 1988), Lecture Notes in Math., 1417, Springer, Berlin, 1990, 117–128 | DOI | MR | Zbl
[4] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl
[5] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston Inc., Boston, MA, 2009, 443–548 | DOI | MR | Zbl
[6] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank $3$”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl
[7] I. Cheltsov, C. Shramov, “Five embeddings of one simple group”, Trans. Amer. Math. Soc., 366:3 (2014), 1289–1331 | DOI | MR | Zbl
[8] I. Cheltsov, C. Shramov, “Three embeddings of the Klein simple group into the Cremona group of rank three”, Transform. Groups, 17:2 (2012), 303–350 | DOI | MR | Zbl
[9] Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank $3$”, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 327–338 | DOI | MR | Zbl
[10] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247 | MR | MR | Zbl
[11] M. Reid, “Minimal models of canonical $3$-folds”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 131–180 | MR | Zbl
[12] W. V. D. Hodge, D. Pedoe, Methods of algebraic geometry, v. II, Cambridge Univ. Press, Cambridge, 1952, x+394 pp. | MR | Zbl
[13] A. Corti, “Singularities of linear systems and $3$-fold birational geometry”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | DOI | MR | Zbl
[14] J. Kollár, K. E. Smith, A. Corti, Rational and nearly rational varieties, Cambridge Stud. Adv. Math., 92, Cambridge Univ. Press, Cambridge, 2004, vi+235 pp. | DOI | MR | Zbl
[15] N. Tziolas, “Terminal $3$-fold divisorial contractions of a surface to a curve. I”, Compositio Math., 139:3 (2003), 239–261 | DOI | MR | Zbl