A Tauberian theorem for multiple power series
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 286-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multiple sequences $\{a(i)\geqslant 0,\ i\in Z_+^n\}$ are considered. The notion of weak one-sided oscillation of such a sequence along a sequence $$ \bigl\{m=m(k)=(m_1(k),\dots,m_n(k)),\ m_j(k)>0 \ \forall\,j=1,\dots,n,\ k\in \mathbb N\bigr\} $$ such that $m_j(k)\to\infty$ as $k\to\infty$ for $j=1,\dots,n$ is introduced. The asymptotic behaviour of the sequence $a(x_1m_1,\dots, x_nm_n)$ (for fixed positive numbers $x_1,\dots,x_n$) is deduced from the asymptotic behaviour as ${k\to\infty}$ of the generating function $A(s)$, $s\in[0,1)^n$, of the multiple sequence under consideration for $s=(e^{-\lambda_1/m_1},\dots,e^{-\lambda_n/m_n})$ (where $\lambda_1,\dots,\lambda_n$ are positive and fixed). The Tauberian theorem thus established generalizes several Tauberian theorems due to the author, which were established while investigating certain classes of random substitutions and random maps of a finite set to itself. Karamata's well-known Tauberian theorem for the generating functions of sequences was the starting point for research in this direction. Bibliography: 36 titles.
Keywords: $\sigma$-finite measures, weak convergence of monotone functions and $\sigma$-finite measures, multiple power series, weakly one-sided oscillating multiple sequences and functions, Tauberian theorem.
@article{SM_2016_207_2_a5,
     author = {A. L. Yakymiv},
     title = {A~Tauberian theorem for multiple power series},
     journal = {Sbornik. Mathematics},
     pages = {286--313},
     year = {2016},
     volume = {207},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a5/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - A Tauberian theorem for multiple power series
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 286
EP  - 313
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_2_a5/
LA  - en
ID  - SM_2016_207_2_a5
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T A Tauberian theorem for multiple power series
%J Sbornik. Mathematics
%D 2016
%P 286-313
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2016_207_2_a5/
%G en
%F SM_2016_207_2_a5
A. L. Yakymiv. A Tauberian theorem for multiple power series. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 286-313. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a5/

[1] N. H. Abel, “Untersuchungen über die Reihe: $1+\frac{m}{1}x+\frac{m\cdot(m-1)}{1\cdot2}\cdot x^2+\frac{m\cdot(m-1)\cdot(m-2)}{1\cdot2\cdot3}\cdot x^3+\dotsb\,\mathrm{u.s.w.}$”, J. Reine Angew. Math., 1 (1826), 311–339 | DOI | MR | Zbl

[2] A. Tauber, “Ein Satz aus der Theorie der unendichen Reihen”, Monatsh. Math. Phys., 8:1 (1887), 273–277 | DOI | MR

[3] A. L. Yakimiv, Probabilistic applications of Tauberian theorems, Mod. Probab. Stat., VSP, Leiden, 2005, viii+225 pp. | DOI | MR | Zbl | Zbl

[4] A. L. Yakymiv, “Limit theorem for the general number of cycles in a random $A$-permutation”, Theory Probab. Appl., 52:1 (2008), 133–146 | DOI | DOI | MR | Zbl

[5] A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random $A$-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275 | DOI | DOI | MR | Zbl

[6] A. L. Yakymiv, “On a number of components in a random $A$-mapping”, Theory Probab. Appl., 59:1 (2015), 114–127 | DOI | DOI | Zbl

[7] J. Karamata, “Über die Hardy–Littelwoodschen Umkehrungen des Abelschen Stetigkeitssatzes”, Math. Z., 32:1 (1930), 319–320 | DOI | MR | Zbl

[8] J. Karamata, “Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze”, Math. Z., 33:1 (1931), 294–299 | DOI | MR | Zbl

[9] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., Wiley, New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[10] V. S. Vladimirov, Yu. N. Drožžinov, B. I. Zavialov, Tauberian theorems for generalized functions, Math. Appl. (Soviet Ser.), 10, Kluwer Acad. Publ., Dordrecht, 1988, xv+293 pp. | DOI | MR | MR | Zbl | Zbl

[11] Yu. N. Drozhzhinov, B. I. Zavialov, “Multidimensional Abelian and Tauberian comparison theorems”, Math. USSR-Sb., 68:1 (1991), 85–110 | DOI | MR | Zbl

[12] Yu. N. Drozhzhinov, B. I. Zavialov, “Multidimensional Tauberian comparison theorems for holomorphic functions of bounded argument”, Math. USSR-Izv., 39:3 (1992), 1097–1112 | DOI | MR | Zbl

[13] Yu. N. Drozhzhinov, B. I. Zavialov, “A Tauberian theorem for quasiasymptotic decompositions of measures with supports in the positive octant”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 185–209 | DOI | MR | Zbl

[14] Yu. N. Drozhzhinov, B. I. Zavyalov, “Kvaziasimptoticheskoe razlozhenie mery”, Publ. Inst. Math. (Beograd) (N.S.), 58:72 (1995), 153–161 | MR | Zbl

[15] Yu. N. Drozhzhinov, B. I. Zavialov, “Local Tauberian theorems in spaces of distributions related to cones, and their applications”, Izv. Math., 61:6 (1997), 1171–1214 | DOI | DOI | MR | Zbl

[16] B. I. Zav'yalov, Yu. N. Drozhzhinov, “One real Tauberian theorem”, Dokl. Math., 57:1 (1998), 30–31 | MR | Zbl

[17] Yu. N. Drozhzhinov, B. I. Zavialov, “Tauberian theorems for generalized functions with values in Banach spaces”, Izv. Math., 66:4 (2002), 701–769 | DOI | DOI | MR | Zbl

[18] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Tauberian theorems for distributions in the scale of regularly varying functionals”, Dokl. Math., 65:2 (2002), 180–183 | MR | Zbl

[19] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, “Tauberovy teoremy dlya obobschennykh funktsii v shkale pravilno menyayuschikhsya funktsii i funktsionalov”, Publ. Inst. Math. (Beograd) (N.S.), 71:85 (2002), 123–132 | DOI | MR | Zbl

[20] Yu. N. Drozhzhinov, B. I. Zav'yalov, “On a multidimensional Tauberian theorem for generalized functions taking values in Banach spaces”, Dokl. Math., 68:1 (2003), 30–33 | MR | Zbl

[21] Yu. N. Drozhzhinov, B. I. Zavialov, “Multidimensional Tauberian theorems for Banach-space valued generalized functions”, Sb. Math., 194:11 (2003), 1599–1646 | DOI | DOI | MR | Zbl

[22] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[23] E. Omey, Multivariate reguliere variatie en toepassingen in kansteorie, Ph. D. Thesis, K. U. Leuven, Belgium, 1982

[24] E. Omey, Multivariate regular variation and applications in probability theory, Eclectica, 74, EHSAL, Brussel, 1989, 59 pp.

[25] L. de Haan, E. Omey, S. Resnick, “Domains of attraction and regular variation in $\mathbb R^d$”, J. Multivariate Anal., 14:1 (1984), 17–33 | DOI | MR | Zbl

[26] E. Omey, E. Willekens, “Abelian and Tauberian theorems for the Laplace transform of functions in several variables”, J. Multivariate Anal., 30:2 (1989), 292–306 | DOI | MR | Zbl

[27] G. H. Hardy, J. E. Littlewood, “Contributions to the arithmetic theory of series”, Proc. London Math. Soc. (2), 11:1 (1913), 411–478 | DOI | MR | Zbl

[28] H. Delange, “Théorèms taubériens pour les séries multiples de Dirihlet et les intégrales multiples de Laplace”, Ann. Sci. Ecole Norm. Sup. (3), 70 (1953), 51–103 | MR | Zbl

[29] K. Knopp, “Limitierungs-Umkehrsätze für Doppelfolgen”, Math. Z., 45 (1939), 573–589 | DOI | MR | Zbl

[30] P. Turán, “Problem 168”, Mat. Lapok, 19 (1968), 377

[31] P. Turán, “Problem 168”, Mat. Lapok, 21 (1970), 165–167

[32] L. Alpár, “Tauberian theorems for power series of several variables. I”, Fourier analysis and approximation theory (Budapest, 1976), v. I, Colloq. Math. Soc. János Bolyai, 19, North-Holland, Amsterdam–New York, 1978, 51–87 | MR | Zbl

[33] L. Alpár, “Tauberian theorems for power series of two variables”, Studia Sci. Math. Hungar., 19:1 (1984), 165–176 | MR | Zbl

[34] L. Alpár, “Tauberian theorems for power series of two real variables. II”, Studia Sci. Math. Hungar., 26:1 (1991), 115–122 | MR | Zbl

[35] Ph. Diamond, “Slowly varying functions of two varibles and a Tauberian theorem for the double Laplace transform”, Appl. Anal., 23:4 (1987), 301–318 | DOI | MR | Zbl

[36] B. Bajšanski, J. Karamata, “Regularly varying functions and the principle of equicontinuity”, Publ. Ramanujan Inst., 1968/69, no. 1, 235–246 | MR | Zbl