@article{SM_2016_207_2_a5,
author = {A. L. Yakymiv},
title = {A~Tauberian theorem for multiple power series},
journal = {Sbornik. Mathematics},
pages = {286--313},
year = {2016},
volume = {207},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a5/}
}
A. L. Yakymiv. A Tauberian theorem for multiple power series. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 286-313. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a5/
[1] N. H. Abel, “Untersuchungen über die Reihe: $1+\frac{m}{1}x+\frac{m\cdot(m-1)}{1\cdot2}\cdot x^2+\frac{m\cdot(m-1)\cdot(m-2)}{1\cdot2\cdot3}\cdot x^3+\dotsb\,\mathrm{u.s.w.}$”, J. Reine Angew. Math., 1 (1826), 311–339 | DOI | MR | Zbl
[2] A. Tauber, “Ein Satz aus der Theorie der unendichen Reihen”, Monatsh. Math. Phys., 8:1 (1887), 273–277 | DOI | MR
[3] A. L. Yakimiv, Probabilistic applications of Tauberian theorems, Mod. Probab. Stat., VSP, Leiden, 2005, viii+225 pp. | DOI | MR | Zbl | Zbl
[4] A. L. Yakymiv, “Limit theorem for the general number of cycles in a random $A$-permutation”, Theory Probab. Appl., 52:1 (2008), 133–146 | DOI | DOI | MR | Zbl
[5] A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random $A$-permutation”, Discrete Math. Appl., 20:3 (2010), 247–275 | DOI | DOI | MR | Zbl
[6] A. L. Yakymiv, “On a number of components in a random $A$-mapping”, Theory Probab. Appl., 59:1 (2015), 114–127 | DOI | DOI | Zbl
[7] J. Karamata, “Über die Hardy–Littelwoodschen Umkehrungen des Abelschen Stetigkeitssatzes”, Math. Z., 32:1 (1930), 319–320 | DOI | MR | Zbl
[8] J. Karamata, “Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze”, Math. Z., 33:1 (1931), 294–299 | DOI | MR | Zbl
[9] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., Wiley, New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[10] V. S. Vladimirov, Yu. N. Drožžinov, B. I. Zavialov, Tauberian theorems for generalized functions, Math. Appl. (Soviet Ser.), 10, Kluwer Acad. Publ., Dordrecht, 1988, xv+293 pp. | DOI | MR | MR | Zbl | Zbl
[11] Yu. N. Drozhzhinov, B. I. Zavialov, “Multidimensional Abelian and Tauberian comparison theorems”, Math. USSR-Sb., 68:1 (1991), 85–110 | DOI | MR | Zbl
[12] Yu. N. Drozhzhinov, B. I. Zavialov, “Multidimensional Tauberian comparison theorems for holomorphic functions of bounded argument”, Math. USSR-Izv., 39:3 (1992), 1097–1112 | DOI | MR | Zbl
[13] Yu. N. Drozhzhinov, B. I. Zavialov, “A Tauberian theorem for quasiasymptotic decompositions of measures with supports in the positive octant”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 185–209 | DOI | MR | Zbl
[14] Yu. N. Drozhzhinov, B. I. Zavyalov, “Kvaziasimptoticheskoe razlozhenie mery”, Publ. Inst. Math. (Beograd) (N.S.), 58:72 (1995), 153–161 | MR | Zbl
[15] Yu. N. Drozhzhinov, B. I. Zavialov, “Local Tauberian theorems in spaces of distributions related to cones, and their applications”, Izv. Math., 61:6 (1997), 1171–1214 | DOI | DOI | MR | Zbl
[16] B. I. Zav'yalov, Yu. N. Drozhzhinov, “One real Tauberian theorem”, Dokl. Math., 57:1 (1998), 30–31 | MR | Zbl
[17] Yu. N. Drozhzhinov, B. I. Zavialov, “Tauberian theorems for generalized functions with values in Banach spaces”, Izv. Math., 66:4 (2002), 701–769 | DOI | DOI | MR | Zbl
[18] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Tauberian theorems for distributions in the scale of regularly varying functionals”, Dokl. Math., 65:2 (2002), 180–183 | MR | Zbl
[19] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, “Tauberovy teoremy dlya obobschennykh funktsii v shkale pravilno menyayuschikhsya funktsii i funktsionalov”, Publ. Inst. Math. (Beograd) (N.S.), 71:85 (2002), 123–132 | DOI | MR | Zbl
[20] Yu. N. Drozhzhinov, B. I. Zav'yalov, “On a multidimensional Tauberian theorem for generalized functions taking values in Banach spaces”, Dokl. Math., 68:1 (2003), 30–33 | MR | Zbl
[21] Yu. N. Drozhzhinov, B. I. Zavialov, “Multidimensional Tauberian theorems for Banach-space valued generalized functions”, Sb. Math., 194:11 (2003), 1599–1646 | DOI | DOI | MR | Zbl
[22] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl
[23] E. Omey, Multivariate reguliere variatie en toepassingen in kansteorie, Ph. D. Thesis, K. U. Leuven, Belgium, 1982
[24] E. Omey, Multivariate regular variation and applications in probability theory, Eclectica, 74, EHSAL, Brussel, 1989, 59 pp.
[25] L. de Haan, E. Omey, S. Resnick, “Domains of attraction and regular variation in $\mathbb R^d$”, J. Multivariate Anal., 14:1 (1984), 17–33 | DOI | MR | Zbl
[26] E. Omey, E. Willekens, “Abelian and Tauberian theorems for the Laplace transform of functions in several variables”, J. Multivariate Anal., 30:2 (1989), 292–306 | DOI | MR | Zbl
[27] G. H. Hardy, J. E. Littlewood, “Contributions to the arithmetic theory of series”, Proc. London Math. Soc. (2), 11:1 (1913), 411–478 | DOI | MR | Zbl
[28] H. Delange, “Théorèms taubériens pour les séries multiples de Dirihlet et les intégrales multiples de Laplace”, Ann. Sci. Ecole Norm. Sup. (3), 70 (1953), 51–103 | MR | Zbl
[29] K. Knopp, “Limitierungs-Umkehrsätze für Doppelfolgen”, Math. Z., 45 (1939), 573–589 | DOI | MR | Zbl
[30] P. Turán, “Problem 168”, Mat. Lapok, 19 (1968), 377
[31] P. Turán, “Problem 168”, Mat. Lapok, 21 (1970), 165–167
[32] L. Alpár, “Tauberian theorems for power series of several variables. I”, Fourier analysis and approximation theory (Budapest, 1976), v. I, Colloq. Math. Soc. János Bolyai, 19, North-Holland, Amsterdam–New York, 1978, 51–87 | MR | Zbl
[33] L. Alpár, “Tauberian theorems for power series of two variables”, Studia Sci. Math. Hungar., 19:1 (1984), 165–176 | MR | Zbl
[34] L. Alpár, “Tauberian theorems for power series of two real variables. II”, Studia Sci. Math. Hungar., 26:1 (1991), 115–122 | MR | Zbl
[35] Ph. Diamond, “Slowly varying functions of two varibles and a Tauberian theorem for the double Laplace transform”, Appl. Anal., 23:4 (1987), 301–318 | DOI | MR | Zbl
[36] B. Bajšanski, J. Karamata, “Regularly varying functions and the principle of equicontinuity”, Publ. Ramanujan Inst., 1968/69, no. 1, 235–246 | MR | Zbl