Continuous $\varepsilon$-selection
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 267-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with properties of sets admitting a continuous selection from the set of nearly best approximations. Necessary and sufficient conditions are put forward for the existence of continuous additive and multiplicative $\varepsilon$-selections on closed sets. Sufficient conditions are given for the existence of continuous selections for stable set-valued mappings with not-necessarily-convex values. Bibliography: 8 titles.
Keywords: continuous selection, infinitely connected set, set-valued mapping.
@article{SM_2016_207_2_a4,
     author = {I. G. Tsar'kov},
     title = {Continuous $\varepsilon$-selection},
     journal = {Sbornik. Mathematics},
     pages = {267--285},
     year = {2016},
     volume = {207},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous $\varepsilon$-selection
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 267
EP  - 285
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/
LA  - en
ID  - SM_2016_207_2_a4
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous $\varepsilon$-selection
%J Sbornik. Mathematics
%D 2016
%P 267-285
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/
%G en
%F SM_2016_207_2_a4
I. G. Tsar'kov. Continuous $\varepsilon$-selection. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 267-285. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/

[1] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl

[2] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[3] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl

[4] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl

[5] K. S. Ryutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl

[6] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl

[7] K. S. Ryutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl

[8] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91