@article{SM_2016_207_2_a4,
author = {I. G. Tsar'kov},
title = {Continuous $\varepsilon$-selection},
journal = {Sbornik. Mathematics},
pages = {267--285},
year = {2016},
volume = {207},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/}
}
I. G. Tsar'kov. Continuous $\varepsilon$-selection. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 267-285. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/
[1] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl
[2] S. V. Konyagin, “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl
[3] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl
[4] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl
[5] K. S. Ryutin, “Uniform continuity of generalized rational approximations”, Math. Notes, 71:2 (2002), 236–244 | DOI | DOI | MR | Zbl
[6] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl
[7] K. S. Ryutin, “Continuity of operators of generalized rational approximation in the space $L_1[0;1]$”, Math. Notes, 73:1 (2003), 142–147 | DOI | DOI | MR | Zbl
[8] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91