Continuous $\varepsilon$-selection
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 267-285

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with properties of sets admitting a continuous selection from the set of nearly best approximations. Necessary and sufficient conditions are put forward for the existence of continuous additive and multiplicative $\varepsilon$-selections on closed sets. Sufficient conditions are given for the existence of continuous selections for stable set-valued mappings with not-necessarily-convex values. Bibliography: 8 titles.
Keywords: continuous selection, infinitely connected set, set-valued mapping.
@article{SM_2016_207_2_a4,
     author = {I. G. Tsar'kov},
     title = {Continuous $\varepsilon$-selection},
     journal = {Sbornik. Mathematics},
     pages = {267--285},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Continuous $\varepsilon$-selection
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 267
EP  - 285
VL  - 207
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/
LA  - en
ID  - SM_2016_207_2_a4
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Continuous $\varepsilon$-selection
%J Sbornik. Mathematics
%D 2016
%P 267-285
%V 207
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/
%G en
%F SM_2016_207_2_a4
I. G. Tsar'kov. Continuous $\varepsilon$-selection. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 267-285. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a4/