Sharp estimates for the modulus of a canonical product
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 238-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A well-known bound for a Weierstrass primary factor is significantly improved. New estimates for the modulus of a canonical product are obtained on this basis, which are sharp in fairly broad classes of entire functions. Bibliography: 2 titles.
Keywords: Weierstrass primary factor, entire functions, canonical product.
@article{SM_2016_207_2_a3,
     author = {S. G. Merzlyakov},
     title = {Sharp estimates for the modulus of a~canonical product},
     journal = {Sbornik. Mathematics},
     pages = {238--266},
     year = {2016},
     volume = {207},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a3/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - Sharp estimates for the modulus of a canonical product
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 238
EP  - 266
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_2_a3/
LA  - en
ID  - SM_2016_207_2_a3
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T Sharp estimates for the modulus of a canonical product
%J Sbornik. Mathematics
%D 2016
%P 238-266
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2016_207_2_a3/
%G en
%F SM_2016_207_2_a3
S. G. Merzlyakov. Sharp estimates for the modulus of a canonical product. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 238-266. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a3/

[1] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, R.I., 1964, viii+493 pp. | MR | MR | Zbl | Zbl

[2] A. Denjoy, “Sur les produits canoniques d'ordre infini”, J. Math. Pures Appl. (6), 6 (1910), 1–136 | Zbl