Mots-clés : $n$-quasigroup, automorphism, Latin hypercube.
@article{SM_2016_207_2_a2,
author = {F. M. Malyshev},
title = {The {Post-Gluskin-Hossz\'u} theorem for finite $n$-quasigroups and self-invariant families of permutations},
journal = {Sbornik. Mathematics},
pages = {226--237},
year = {2016},
volume = {207},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a2/}
}
F. M. Malyshev. The Post-Gluskin-Hosszú theorem for finite $n$-quasigroups and self-invariant families of permutations. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 226-237. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a2/
[1] A. G. Kurosh, Obschaya algebra, Lektsii 1969–1970 uchebnogo goda, Nauka, M., 1974, 159 pp. | MR | Zbl
[2] V. D. Belousov, $n$-arnye kvazigruppy, Shtiintsa, Kishinev, 1972, 227 pp. | MR | Zbl
[3] A. M. Galmak, $n$-arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 196 pp.
[4] E. L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR | Zbl
[5] L. M. Gluskin, “Pozitsionnye operativy”, Matem. sb., 68(110):3 (1965), 444–472 | MR | Zbl
[6] M. Hosszú, “On the explicit form of $n$-group operations”, Publ. Math. Debrecen, 10 (1963), 88–92 | MR | Zbl
[7] W. Dörnte, “Untersushungen über einen verallgeweinerten Gruppenbegriff”, Math. Z., 29:1 (1928), 1–19 | DOI | MR | Zbl
[8] A. M. Galmak, G. N. Vorobev, “O teoreme Posta–Gluskina–Khossu”, PFMT, 2013, no. 1(14), 55–60 | Zbl
[9] F. N. Sokhatskii, “Ob assotsiativnosti mnogomestnykh operatsii”, Diskret. matem., 4:1 (1992), 66–84 | MR | Zbl
[10] E. I. Sokolov, “O teoreme Gluskina–Khossu dlya $n$-grupp Dernte”, Matem. issledovaniya, 39, Shtiintsa, Kishinev, 1976, 187–189 | MR | Zbl
[11] A. M. Galmak, N. A. Schuchkin, “Porozhdayuschie mnozhestva $n$-arnykh grupp”, Chebyshevskii sb., 15:1 (2014), 89–109 | MR
[12] M. Hosszú, “Algebrai rendszereken értelmezett függvényegyenletek. I”, Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl., 12 (1962), 303–315 | MR | Zbl
[13] V. V. Borisenko, “O transversalyakh raspavshikhsya latinskikh kvadratov chetnogo poryadka”, Matem. vopr. kriptogr., 5:1 (2014), 5–25