The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 191-225
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the problem of the least possible type of entire functions whose zeros have fixed upper and lower averaged densities and lie in a given set. In particular, we solve this problem in several important cases: 1) all zeros lie in a sector, 2) all zeros lie between two straight lines; 3) all zeros lie on rays subdividing the complex plane into equal sectors.
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
type of an entire function, upper and lower averaged densities of zeros.
                    
                    
                    
                  
                
                
                @article{SM_2016_207_2_a1,
     author = {G. G. Braichev},
     title = {The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector},
     journal = {Sbornik. Mathematics},
     pages = {191--225},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a1/}
}
                      
                      
                    TY - JOUR AU - G. G. Braichev TI - The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector JO - Sbornik. Mathematics PY - 2016 SP - 191 EP - 225 VL - 207 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_2_a1/ LA - en ID - SM_2016_207_2_a1 ER -
G. G. Braichev. The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 191-225. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a1/
