The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 191-225

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the least possible type of entire functions whose zeros have fixed upper and lower averaged densities and lie in a given set. In particular, we solve this problem in several important cases: 1) all zeros lie in a sector, 2) all zeros lie between two straight lines; 3) all zeros lie on rays subdividing the complex plane into equal sectors. Bibliography: 15 titles.
Keywords: type of an entire function, upper and lower averaged densities of zeros.
@article{SM_2016_207_2_a1,
     author = {G. G. Braichev},
     title = {The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector},
     journal = {Sbornik. Mathematics},
     pages = {191--225},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a1/}
}
TY  - JOUR
AU  - G. G. Braichev
TI  - The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 191
EP  - 225
VL  - 207
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_2_a1/
LA  - en
ID  - SM_2016_207_2_a1
ER  - 
%0 Journal Article
%A G. G. Braichev
%T The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector
%J Sbornik. Mathematics
%D 2016
%P 191-225
%V 207
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_2_a1/
%G en
%F SM_2016_207_2_a1
G. G. Braichev. The least type of an entire function whose zeros have prescribed averaged densities and lie on rays or in a~sector. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 191-225. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a1/