On the exponent of $G$-spaces and isovariant extensors
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 155-190
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The equivariant version of the Curtis-Schori-West theorem is investigated. It is proved that for a nondegenerate Peano $G$-continuum $\mathbb X$ with an action of the compact abelian Lie group $G$, the exponent $\exp\mathbb X$ is equimorphic to the maximal equivariant Hilbert cube if and only if the free part $\mathbb X_{\mathrm{free}}$ is dense in $\mathbb X$. We also show that the latter is sufficient for the equimorphy of $\exp\mathbb X$ and $\mathbb Q$ in the case of an action of an arbitrary compact Lie group $G$. The key to the proof of these results lies in the theory of the universal $G$-space (in the sense of Palais).
Bibliography: 28 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
isovariant absolute extensor, classifying $G$-space, exponent of $G$-space
Mots-clés : Palais universal $G$-space, equivariant Hilbert cube.
                    
                  
                
                
                Mots-clés : Palais universal $G$-space, equivariant Hilbert cube.
@article{SM_2016_207_2_a0,
     author = {S. M. Ageev},
     title = {On the exponent of $G$-spaces and isovariant extensors},
     journal = {Sbornik. Mathematics},
     pages = {155--190},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a0/}
}
                      
                      
                    S. M. Ageev. On the exponent of $G$-spaces and isovariant extensors. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 155-190. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a0/
