On the exponent of $G$-spaces and isovariant extensors
Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 155-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equivariant version of the Curtis-Schori-West theorem is investigated. It is proved that for a nondegenerate Peano $G$-continuum $\mathbb X$ with an action of the compact abelian Lie group $G$, the exponent $\exp\mathbb X$ is equimorphic to the maximal equivariant Hilbert cube if and only if the free part $\mathbb X_{\mathrm{free}}$ is dense in $\mathbb X$. We also show that the latter is sufficient for the equimorphy of $\exp\mathbb X$ and $\mathbb Q$ in the case of an action of an arbitrary compact Lie group $G$. The key to the proof of these results lies in the theory of the universal $G$-space (in the sense of Palais). Bibliography: 28 titles.
Keywords: isovariant absolute extensor, classifying $G$-space, exponent of $G$-space
Mots-clés : Palais universal $G$-space, equivariant Hilbert cube.
@article{SM_2016_207_2_a0,
     author = {S. M. Ageev},
     title = {On the exponent of $G$-spaces and isovariant extensors},
     journal = {Sbornik. Mathematics},
     pages = {155--190},
     year = {2016},
     volume = {207},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_2_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - On the exponent of $G$-spaces and isovariant extensors
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 155
EP  - 190
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_2_a0/
LA  - en
ID  - SM_2016_207_2_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T On the exponent of $G$-spaces and isovariant extensors
%J Sbornik. Mathematics
%D 2016
%P 155-190
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2016_207_2_a0/
%G en
%F SM_2016_207_2_a0
S. M. Ageev. On the exponent of $G$-spaces and isovariant extensors. Sbornik. Mathematics, Tome 207 (2016) no. 2, pp. 155-190. http://geodesic.mathdoc.fr/item/SM_2016_207_2_a0/

[1] J. van Mill, Infinite-dimensional topology, prerequisites and introduction, North-Holland Math. Library, 43, North-Holland Publishing Co., Amsterdam, 1989, xii+401 pp. | MR | Zbl

[2] S. M. Ageev, “Manifolds modeled by an equivariant Hilbert cube”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 445–468 | DOI | MR | Zbl

[3] A. Teleiko, “Equivariant Hilbert cubes and their functorial representations”, Methods Funct. Anal. Topology, 3:2 (1997), 72–82 | MR | Zbl

[4] A. Teleiko, M. Zarichnyi, Categorical topology of compact Hausdorff spaces, Math. Stud. Monogr. Ser., 5, VNTL Publ., L'viv, 1999, 263 pp. | MR | Zbl

[5] M. Steinberger, J. West, “On the geometric topology of locally linear actions of finite groups”, Geometric and Algebraic Topology, Banach Center Publ., 18, PWN, Warszaw, 1986, 181–204 | MR | Zbl

[6] K. Borsuk, Theory of retracts, Monogr. Mat., 44, PWN, Warsaw, 1967, 251 pp. | MR | MR | Zbl

[7] Sze-tsen Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965, 234 pp. | MR | Zbl

[8] R. Palais, The classification of $G$-spaces, Mem. Amer. Math. Soc., no. 36, Amer. Math. Soc., Providence, R.I., 1960, iv+72 pp. | MR | Zbl

[9] S. M. Ageev, “Klassifikatsiya prostranstv”, Izvestiya RAN, 78 (1995), 223–255

[10] S. M. Ageev, D. D. Repovš, “The covering homotopy extension problem for compact transformation groups”, Math. Notes, 92:6 (2012), 737–750 | DOI | DOI | MR | Zbl

[11] S. M. Ageev, “On Palais universal $G$-spaces and isovariant absolute extensors”, Sb. Math., 203:6 (2012), 769–797 | DOI | DOI | MR | Zbl

[12] S. M. Ageev, “Isovariant extensors and the characterization of equivariant homotopy equivalences”, Izv. Math., 76:5 (2012), 857–880 | DOI | DOI | MR | Zbl

[13] T. tom Dieck, Transformation groups, De Gruyter Stud. Math., 8, Walter de Gruyter Co., Berlin, 1987, x+312 pp. | MR | Zbl

[14] H. Torunczyk, J. E. West, “The fine structure of $S^1/S^1$; a $Q$-manifold hyperspace localization of the integers”, Proceedings of the International conference on geometric topology (Warsaw, 1978), PWN, Warsaw, 1980, 439–449 | MR | Zbl

[15] S. M. Ageev, S. A. Bogatyi, “The Banach–Mazur compactum is not homeomorphic to the Hilbert cube”, Russian Math. Surveys, 53:1 (1998), 205–207 | DOI | DOI | MR | Zbl

[16] S. M. Ageev, S. A. Bogatyi, The Banach–Mazur compactum in the dimension two, Topology Atlas preprint No 291, 1997, 8 pp. {http://at.yorku.ca/p/a/a/m/14.htm}

[17] G. E. Bredon, Introduction to compact transformation groups, Pure Appl. Math., 46, Academic Press, New York–London, 1972, xiii+459 pp. | MR | Zbl

[18] V. V. Fedorchuk, V. V. Filippov, Obschaya topologiya. Osnovnye konstruktsii, 2-e izd., Fizmatlit, M., 2006, 332 pp.

[19] S. Illman, “The equivariant triangulation theorem for actions of compact Lie groups”, Math. Ann., 262:4 (1983), 487–501 | DOI | MR | Zbl

[20] J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001, xii+630 pp. | MR | Zbl

[21] H. Abels, “A universal proper $G$-space”, Math. Z., 159:2 (1978), 143–158 | DOI | MR | Zbl

[22] T. Matumoto, “Equivariant $K$-theory and Fredholm operators”, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 18 (1971), 109–125 | MR | Zbl

[23] M. Murayama, “On $G$-ANR's and their $G$-homotopy types”, Osaka J. Math., 20 (1983), 479–512 | MR | Zbl

[24] S. M. Ageev, D. Repovš, “On extending actions of groups”, Sb. Math., 201:2 (2010), 159–182 | DOI | DOI | MR | Zbl

[25] B. A. Pasynkov, “On the dimension and geometry of mappings”, Soviet Math. Dokl., 16:2 (1975), 384–388 | MR | Zbl

[26] S. M. Ageev, “On a problem of Zambakhidze–Smirnov”, Math. Notes, 58:1 (1995), 679–684 | DOI | MR | Zbl

[27] R. A. McCoy, I. Ntantu, Topological properties of spaces of continuous functions, Lecture Notes in Math., 1315, Springer-Verlag, Berlin, 1988, iv+124 pp. | MR | Zbl

[28] S. A. Antonyan, The topology of the Banach–Mazur compactum, Preprint No 558, Instituto de Matemáticas de la UNAM, 1997