Mots-clés : Nevanlinna domain, $d$-Nevanlinna domain, polyanalytic polynomial
@article{SM_2016_207_1_a5,
author = {K. Yu. Fedorovskiy},
title = {On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains},
journal = {Sbornik. Mathematics},
pages = {140--154},
year = {2016},
volume = {207},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/}
}
TY - JOUR AU - K. Yu. Fedorovskiy TI - On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains JO - Sbornik. Mathematics PY - 2016 SP - 140 EP - 154 VL - 207 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/ LA - en ID - SM_2016_207_1_a5 ER -
%0 Journal Article %A K. Yu. Fedorovskiy %T On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains %J Sbornik. Mathematics %D 2016 %P 140-154 %V 207 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/ %G en %F SM_2016_207_1_a5
K. Yu. Fedorovskiy. On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 140-154. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/
[1] A. G. O'Farrell, “Annihilators of rational modules”, J. Functional Analysis, 19:4 (1975), 373–389 | DOI | MR | Zbl
[2] J. Verdera, “Approximation by rational modules in Sobolev and Lipschitz norms”, J. Funct. Anal., 58:3 (1984), 267–290 | DOI | MR | Zbl
[3] J. Verdera, “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pacific J. Math, 159:2 (1993), 379–396 | DOI | MR | Zbl
[4] J. J. Carmona Doménech, “A necessary and sufficient condition for uniform approximation by certain rational modules”, Proc. Amer. Math. Soc., 86:3 (1982), 487–490 | DOI | MR | Zbl
[5] J. J. Carmona, “Mergelyan's approximation theorem for rational modules”, J. Approx. Theory, 44:2 (1985), 113–126 | DOI | MR | Zbl
[6] J. J. Carmona Doménech, “The closure in $\mathrm{Lip}_{\alpha}$ norms of rational modules with three generators”, Illinois J. Math., 29:3 (1985), 418–431 | MR | Zbl
[7] T. Trent, J. L. M. Wang, “Uniform approximation by rational modules on nowhere dense sets”, Proc. Amer. Math. Soc., 81:1 (1981), 62–64 | DOI | MR | Zbl
[8] T. T. Trent, J. L. Wang, “The uniform closure of rational modules”, Bull. London Math. Soc., 13:5 (1981), 415–420 | DOI | MR | Zbl
[9] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl
[10] K. Yu. Fedorovskiy, “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes, 59:4 (1996), 435–439 | DOI | DOI | MR | Zbl
[11] K. Yu. Fedorovskiy, “Nevanlinna domains in problems of polyanalytic polynomial approximation”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 131–142 | DOI | MR | Zbl
[12] R. G. Douglas, H. S. Shapiro, A. L. Shields, “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76 | DOI | MR | Zbl
[13] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:10 (2002), 1469–1492 | DOI | DOI | MR | Zbl
[14] N. K. Nikol'skii, Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986, xii+491 pp. | DOI | MR | MR | Zbl | Zbl
[15] A. B. Baranov, J. J. Carmona, K. Yu. Fedorovskiy, “Density of certain polynomial modules”, J. Approx. Theory (to appear) , Available online 27 February 2015 | DOI
[16] K. Yu. Fedorovskii, “On some properties and examples of Nevanlinna domains”, Proc. Steklov Inst. Math., 253 (2006), 186–194 | DOI | MR | Zbl
[17] A. D. Baranov, K. Yu. Fedorovskiy, “Boundary regularity of Nevanlinna domains and univalent functions in model subspaces”, Sb. Math., 202:12 (2011), 1723–1740 | DOI | DOI | MR | Zbl
[18] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl
[19] J. J. Carmona, K. Yu. Fedorovskii, “On the dependence of uniform polyanalytic polynomial approximations on the order of polyanalyticity”, Math. Notes, 83:1 (2008), 31–36 | DOI | DOI | MR | Zbl