On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 140-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of the density in the space $L^p$, $1\leq p\leq\infty$, on the unit circle, of the subspaces $H^p+\sum_{k=1}^mw_kH^p$, where $H^p$ is the standard Hardy space and $w_1,\dots,w_m$ are given functions in the class $L^\infty$. This question is closely related to problems of uniform and $L^p$-approximations of functions by polyanalytic polynomials on the boundaries of simple connected domains in $\mathbb C$. The obtained results are formulated in terms of Nevanlinna and $d$-Nevanlinna domains, that is, in terms of special analytic characteristics of simply connected domains in $\mathbb C$, which are related to the pseudocontinuation property of bounded holomorphic functions. Bibliography: 19 titles.
Keywords: pseudocontinuation, uniform approximation, $L^p$-approximation.
Mots-clés : Nevanlinna domain, $d$-Nevanlinna domain, polyanalytic polynomial
@article{SM_2016_207_1_a5,
     author = {K. Yu. Fedorovskiy},
     title = {On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains},
     journal = {Sbornik. Mathematics},
     pages = {140--154},
     publisher = {mathdoc},
     volume = {207},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 140
EP  - 154
VL  - 207
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/
LA  - en
ID  - SM_2016_207_1_a5
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
%J Sbornik. Mathematics
%D 2016
%P 140-154
%V 207
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/
%G en
%F SM_2016_207_1_a5
K. Yu. Fedorovskiy. On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 140-154. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/