On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 140-154
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the question of the density in the space $L^p$, $1\leq p\leq\infty$, on the unit circle, of the subspaces
$H^p+\sum_{k=1}^mw_kH^p$, where $H^p$ is the standard Hardy space and $w_1,\dots,w_m$ are given functions in the class $L^\infty$. This question is closely related to problems of uniform and $L^p$-approximations of functions by polyanalytic polynomials on the boundaries of simple connected domains in $\mathbb C$. The obtained
results are formulated in terms of Nevanlinna and $d$-Nevanlinna domains, that is, in terms of special analytic characteristics of simply connected domains in $\mathbb C$, which are related to the pseudocontinuation property of bounded holomorphic functions.
Bibliography: 19 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
pseudocontinuation, uniform approximation, $L^p$-approximation.
Mots-clés : Nevanlinna domain, $d$-Nevanlinna domain, polyanalytic polynomial
                    
                  
                
                
                Mots-clés : Nevanlinna domain, $d$-Nevanlinna domain, polyanalytic polynomial
@article{SM_2016_207_1_a5,
     author = {K. Yu. Fedorovskiy},
     title = {On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains},
     journal = {Sbornik. Mathematics},
     pages = {140--154},
     publisher = {mathdoc},
     volume = {207},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/}
}
                      
                      
                    TY - JOUR AU - K. Yu. Fedorovskiy TI - On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains JO - Sbornik. Mathematics PY - 2016 SP - 140 EP - 154 VL - 207 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/ LA - en ID - SM_2016_207_1_a5 ER -
%0 Journal Article %A K. Yu. Fedorovskiy %T On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains %J Sbornik. Mathematics %D 2016 %P 140-154 %V 207 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/ %G en %F SM_2016_207_1_a5
K. Yu. Fedorovskiy. On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 140-154. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/
