On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 140-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the question of the density in the space $L^p$, $1\leq p\leq\infty$, on the unit circle, of the subspaces $H^p+\sum_{k=1}^mw_kH^p$, where $H^p$ is the standard Hardy space and $w_1,\dots,w_m$ are given functions in the class $L^\infty$. This question is closely related to problems of uniform and $L^p$-approximations of functions by polyanalytic polynomials on the boundaries of simple connected domains in $\mathbb C$. The obtained results are formulated in terms of Nevanlinna and $d$-Nevanlinna domains, that is, in terms of special analytic characteristics of simply connected domains in $\mathbb C$, which are related to the pseudocontinuation property of bounded holomorphic functions. Bibliography: 19 titles.
Keywords: pseudocontinuation, uniform approximation, $L^p$-approximation.
Mots-clés : Nevanlinna domain, $d$-Nevanlinna domain, polyanalytic polynomial
@article{SM_2016_207_1_a5,
     author = {K. Yu. Fedorovskiy},
     title = {On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains},
     journal = {Sbornik. Mathematics},
     pages = {140--154},
     year = {2016},
     volume = {207},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 140
EP  - 154
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/
LA  - en
ID  - SM_2016_207_1_a5
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains
%J Sbornik. Mathematics
%D 2016
%P 140-154
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/
%G en
%F SM_2016_207_1_a5
K. Yu. Fedorovskiy. On the density of certain modules of polyanalytic type in spaces of integrable functions on the boundaries of simply connected domains. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 140-154. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a5/

[1] A. G. O'Farrell, “Annihilators of rational modules”, J. Functional Analysis, 19:4 (1975), 373–389 | DOI | MR | Zbl

[2] J. Verdera, “Approximation by rational modules in Sobolev and Lipschitz norms”, J. Funct. Anal., 58:3 (1984), 267–290 | DOI | MR | Zbl

[3] J. Verdera, “On the uniform approximation problem for the square of the Cauchy–Riemann operator”, Pacific J. Math, 159:2 (1993), 379–396 | DOI | MR | Zbl

[4] J. J. Carmona Doménech, “A necessary and sufficient condition for uniform approximation by certain rational modules”, Proc. Amer. Math. Soc., 86:3 (1982), 487–490 | DOI | MR | Zbl

[5] J. J. Carmona, “Mergelyan's approximation theorem for rational modules”, J. Approx. Theory, 44:2 (1985), 113–126 | DOI | MR | Zbl

[6] J. J. Carmona Doménech, “The closure in $\mathrm{Lip}_{\alpha}$ norms of rational modules with three generators”, Illinois J. Math., 29:3 (1985), 418–431 | MR | Zbl

[7] T. Trent, J. L. M. Wang, “Uniform approximation by rational modules on nowhere dense sets”, Proc. Amer. Math. Soc., 81:1 (1981), 62–64 | DOI | MR | Zbl

[8] T. T. Trent, J. L. Wang, “The uniform closure of rational modules”, Bull. London Math. Soc., 13:5 (1981), 415–420 | DOI | MR | Zbl

[9] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl

[10] K. Yu. Fedorovskiy, “Uniform $n$-analytic polynomial approximations of functions on rectifiable contours in $\mathbb C$”, Math. Notes, 59:4 (1996), 435–439 | DOI | DOI | MR | Zbl

[11] K. Yu. Fedorovskiy, “Nevanlinna domains in problems of polyanalytic polynomial approximation”, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, 131–142 | DOI | MR | Zbl

[12] R. G. Douglas, H. S. Shapiro, A. L. Shields, “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 37–76 | DOI | MR | Zbl

[13] J. J. Carmona, P. V. Paramonov, K. Yu. Fedorovskiy, “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sb. Math., 193:10 (2002), 1469–1492 | DOI | DOI | MR | Zbl

[14] N. K. Nikol'skii, Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986, xii+491 pp. | DOI | MR | MR | Zbl | Zbl

[15] A. B. Baranov, J. J. Carmona, K. Yu. Fedorovskiy, “Density of certain polynomial modules”, J. Approx. Theory (to appear) , Available online 27 February 2015 | DOI

[16] K. Yu. Fedorovskii, “On some properties and examples of Nevanlinna domains”, Proc. Steklov Inst. Math., 253 (2006), 186–194 | DOI | MR | Zbl

[17] A. D. Baranov, K. Yu. Fedorovskiy, “Boundary regularity of Nevanlinna domains and univalent functions in model subspaces”, Sb. Math., 202:12 (2011), 1723–1740 | DOI | DOI | MR | Zbl

[18] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[19] J. J. Carmona, K. Yu. Fedorovskii, “On the dependence of uniform polyanalytic polynomial approximations on the order of polyanalyticity”, Math. Notes, 83:1 (2008), 31–36 | DOI | DOI | MR | Zbl