Mots-clés : Liouville foliation
@article{SM_2016_207_1_a4,
author = {S. S. Nikolaenko},
title = {Topological classification of the {Goryachev} integrable case in rigid body dynamics},
journal = {Sbornik. Mathematics},
pages = {113--139},
year = {2016},
volume = {207},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a4/}
}
S. S. Nikolaenko. Topological classification of the Goryachev integrable case in rigid body dynamics. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 113-139. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a4/
[1] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[2] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl
[3] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl
[5] O. E. Orel, P. E. Ryabov, “Bifurcation sets in a problem on motion of a rigid body in fluid in the generalization of this problem”, Regul. Chaotic Dyn., 3:2 (1998), 82–91 | DOI | MR | Zbl
[6] S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268 | DOI | DOI | MR | Zbl
[7] D. N. Goryachev, “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshavskie Universitetskie Izvestiya, 1916, no. 3, 1–13 | Zbl
[8] P. E. Ryabov, “The phase topology of a special case of Goryachev integrability in rigid body dynamics”, Sb. Math., 205:7 (2014), 1024–1044 | DOI | DOI | MR | Zbl
[9] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[10] O. E. Orel, “Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems”, Sb. Math., 186:2 (1995), 271–296 | DOI | MR | Zbl
[11] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii. I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805
[12] Nguyen Tien Zung, “A note on degenerate corank-one singularities of integrable Hamiltonian systems”, Comment. Math. Helv., 75:2 (2000), 271–283 | DOI | MR | Zbl
[13] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl
[14] A. V. Bolsinov, A. T. Fomenko, “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii”, I, Matem. sb., 185:4 (1994), 27–80 ; II, Матем. сб., 185:5 (1994), 27–78 ; A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem”, I, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 ; II, 82:1, 21–63 | MR | Zbl | MR | Zbl | DOI | DOI
[15] A. V. Bolsinov, A. T. Fomenko, “Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics”, Izv. Math., 59:1 (1995), 63–100 | DOI | MR | Zbl