Topological classification of the Goryachev integrable case in rigid body dynamics
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 113-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics — in other words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles.
Keywords: integrable Hamiltonian system, topological classification, Goryachev case, marked molecule.
Mots-clés : Liouville foliation
@article{SM_2016_207_1_a4,
     author = {S. S. Nikolaenko},
     title = {Topological classification of the {Goryachev} integrable case in rigid body dynamics},
     journal = {Sbornik. Mathematics},
     pages = {113--139},
     year = {2016},
     volume = {207},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a4/}
}
TY  - JOUR
AU  - S. S. Nikolaenko
TI  - Topological classification of the Goryachev integrable case in rigid body dynamics
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 113
EP  - 139
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a4/
LA  - en
ID  - SM_2016_207_1_a4
ER  - 
%0 Journal Article
%A S. S. Nikolaenko
%T Topological classification of the Goryachev integrable case in rigid body dynamics
%J Sbornik. Mathematics
%D 2016
%P 113-139
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a4/
%G en
%F SM_2016_207_1_a4
S. S. Nikolaenko. Topological classification of the Goryachev integrable case in rigid body dynamics. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 113-139. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a4/

[1] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[2] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl

[3] A. T. Fomenko, H. Zieschang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[4] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | MR | Zbl | Zbl

[5] O. E. Orel, P. E. Ryabov, “Bifurcation sets in a problem on motion of a rigid body in fluid in the generalization of this problem”, Regul. Chaotic Dyn., 3:2 (1998), 82–91 | DOI | MR | Zbl

[6] S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268 | DOI | DOI | MR | Zbl

[7] D. N. Goryachev, “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshavskie Universitetskie Izvestiya, 1916, no. 3, 1–13 | Zbl

[8] P. E. Ryabov, “The phase topology of a special case of Goryachev integrability in rigid body dynamics”, Sb. Math., 205:7 (2014), 1024–1044 | DOI | DOI | MR | Zbl

[9] V. V. Fokicheva, “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[10] O. E. Orel, “Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems”, Sb. Math., 186:2 (1995), 271–296 | DOI | MR | Zbl

[11] M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii. I. Metody i prilozheniya k klassicheskim sistemam”, Nelineinaya dinam., 6:4 (2010), 769–805

[12] Nguyen Tien Zung, “A note on degenerate corank-one singularities of integrable Hamiltonian systems”, Comment. Math. Helv., 75:2 (2000), 271–283 | DOI | MR | Zbl

[13] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | DOI | MR | Zbl

[14] A. V. Bolsinov, A. T. Fomenko, “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii”, I, Matem. sb., 185:4 (1994), 27–80 ; II, Матем. сб., 185:5 (1994), 27–78 ; A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem”, I, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 ; II, 82:1, 21–63 | MR | Zbl | MR | Zbl | DOI | DOI

[15] A. V. Bolsinov, A. T. Fomenko, “Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics”, Izv. Math., 59:1 (1995), 63–100 | DOI | MR | Zbl