Extrapolation of operators acting into quasi-Banach spaces
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 85-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear and sublinear operators acting from the scale of $L_p$ spaces to a certain fixed quasinormed space are considered. It is shown how the extrapolation construction proposed by Jawerth and Milman at the end of 1980s can be used to extend a bounded action of an operator from the $L_p$ scale to wider spaces. Theorems are proved which generalize Yano's extrapolation theorem to the case of a quasinormed target space. More precise results are obtained under additional conditions on the quasinorm. Bibliography: 35 titles.
Keywords: extrapolation of operators, Yano's theorem, symmetric space, Lorentz space
Mots-clés : quasi-Banach space.
@article{SM_2016_207_1_a3,
     author = {K. V. Lykov},
     title = {Extrapolation of operators acting into {quasi-Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {85--112},
     publisher = {mathdoc},
     volume = {207},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a3/}
}
TY  - JOUR
AU  - K. V. Lykov
TI  - Extrapolation of operators acting into quasi-Banach spaces
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 85
EP  - 112
VL  - 207
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a3/
LA  - en
ID  - SM_2016_207_1_a3
ER  - 
%0 Journal Article
%A K. V. Lykov
%T Extrapolation of operators acting into quasi-Banach spaces
%J Sbornik. Mathematics
%D 2016
%P 85-112
%V 207
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a3/
%G en
%F SM_2016_207_1_a3
K. V. Lykov. Extrapolation of operators acting into quasi-Banach spaces. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 85-112. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a3/