Irreducible representations of finitely generated nilpotent groups
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 41-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that irreducible complex representations of finitely generated nilpotent groups are monomial if and only if they have finite weight, which was conjectured by Parshin. Note that we consider (possibly infinite-dimensional) representations without any topological structure. In addition, we prove that for certain induced representations, irreducibility is implied by Schur irreducibility. Both results are obtained in a more general form for representations over an arbitrary field. Bibliography: 21 titles.
Keywords: finitely generated nilpotent groups, finite weight representations.
Mots-clés : monomial representations
@article{SM_2016_207_1_a1,
     author = {I. V. Beloshapka and S. O. Gorchinskiy},
     title = {Irreducible representations of finitely generated nilpotent groups},
     journal = {Sbornik. Mathematics},
     pages = {41--64},
     year = {2016},
     volume = {207},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a1/}
}
TY  - JOUR
AU  - I. V. Beloshapka
AU  - S. O. Gorchinskiy
TI  - Irreducible representations of finitely generated nilpotent groups
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 41
EP  - 64
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a1/
LA  - en
ID  - SM_2016_207_1_a1
ER  - 
%0 Journal Article
%A I. V. Beloshapka
%A S. O. Gorchinskiy
%T Irreducible representations of finitely generated nilpotent groups
%J Sbornik. Mathematics
%D 2016
%P 41-64
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a1/
%G en
%F SM_2016_207_1_a1
I. V. Beloshapka; S. O. Gorchinskiy. Irreducible representations of finitely generated nilpotent groups. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 41-64. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a1/

[1] Zh.-P. Serr, Lineinye predstavleniya konechnykh grupp, Mir, M., 1970, 132 pp. ; J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967, xii+135 pp. (not consecutively paged) ; J.-P. Serre, Linear representations of finite groups, Grad. Texts in Math., 42, Springer-Verlag, 1977, x+170 с. | Zbl | MR | Zbl | MR | Zbl

[2] A. A. Kirillov, “Indutsirovannye predstavleniya nilpotentnykh grupp Li”, Dokl. AN SSSR, 128 (1959), 886–889 | MR | Zbl

[3] A. A. Kirillov, “Unitary representations of nilpotent Lie groups”, Russian Math. Surveys, 17:4 (1962), 53–104 | DOI | MR | Zbl

[4] J. Dixmier, “Sur les représentations unitaires des groupes de Lie nilpotents. I”, Amer. J. Math., 81:1 (1959), 160–170 | DOI | MR | Zbl

[5] I. D. Brown, “Representation of finitely generated nilpotent groups”, Pacific J. Math., 45:1 (1973), 13–26 | DOI | MR | Zbl

[6] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the International Congress of Mathematicians (Hyderabad, 2010), v. I, Hindustan Book Agency, New Delhi, 2011, 362–392 | MR | Zbl

[7] S. A. Arnal', A. N. Parshin, “On irreducible representations of discrete Heisenberg groups”, Math. Notes, 92:3 (2012), 295–301 | DOI | DOI | MR | Zbl

[8] I. H. Bernstein, A. V. Zelevinskii, “Representations of the group $GL(n,F)$ where $F$ is a non-Archimedean local field”, Russian Math. Surveys, 31:3 (1976), 1–68 | DOI | MR | Zbl

[9] J. Jacobsen, H. Stetkær, “Ultra-irreducibility of induced representations”, Math. Scand., 68:2 (1991), 305–319 | MR | Zbl

[10] A. N. Parshin, “On holomorphic representations of discrete Heisenberg groups”, Funct. Anal. Appl., 44:2 (2010), 156–159 | DOI | DOI | MR | Zbl

[11] J. Bernstein, Draft of: representations of $p$-adic groups, Lectures at Harvard University written by K. E. Rumelhart, 1992, 110 pp. http://www.math.tau.ac.il/~bernstei/Publication_list/Publication_list.html

[12] S. D. Berman, V. V. Sharaya, “Irreducible complex representations of finitely generated nilpotent groups”, Ukrainian Math. J., 29 (1977), 331–337 | MR | Zbl

[13] D. Segal, “Irreducible representations of finitely generated nilpotent groups”, Math. Proc. Cambridge Philos. Soc., 81:2 (1977), 201–208 | DOI | MR | Zbl

[14] S. D. Berman, E. Sh. Kerer, “Representations of nilpotent torsion-free groups of class $2$ with two generators”, Funct. Anal. Appl., 11:4 (1977), 301–302 | DOI | MR | Zbl

[15] A. I. Mal'cev, On a class of homogeneous spaces, Amer. Math. Soc. Translation, 1951, no. 39, Amer. Math. Soc., Providence, R.I., 1951, 33 pp. | MR | MR | Zbl

[16] G. Baumslag, Lecture notes on nilpotent groups, CBMS Regional Conf. Ser. in Math., 2, Amer. Math. Soc., Providence, R.I., 1971, vii+73 pp. | MR | Zbl

[17] A. Mann, How groups grow, London Math. Soc. Lecture Note Ser., 395, Cambridge Univ. Press, Cambridge, 2012, x+199 pp. | MR | Zbl

[18] M.-F. Vignéras, Représentations $l$-modulaires d'un groupe réductif p-adique avec $l\ne p$, Progr. Math., 137, Birkhäuser Boston, Inc., Boston, MA, 1996, xviii+233 pp. | MR | Zbl

[19] G. W. Mackey, “On induced representations of groups”, Amer. J. Math., 73:3 (1951), 576–592 | DOI | MR | Zbl

[20] P. J. Kahn, Automorphisms of the discrete Heisenberg groups, 2005, 7 pp. {http://www.math.cornell.edu/m/People/Faculty/kahn}

[21] D. V. Osipov, “The discrete Heisenberg group and its automorphism group”, Math. Notes, 98:1 (2015), 185–188 | DOI | DOI | MR | Zbl