Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 1-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first mixed problem is investigated for a certain class of parabolic equations with double non-power-law nonlinearities in a cylindrical domain of the form $D=(t>0)\times\Omega$. The domain $\Omega\subset \mathbb R^n$ can be unbounded. The existence of strong solutions in a Sobolev-Orlicz space is proved by the method of Galerkin approximations. A maximum principle is established, and upper and lower bounds characterizing the power-law decay of solution as $t\to \infty$ are proved. The uniqueness of the solution is proved under certain additional assumptions. Bibliography: 29 titles.
Keywords: parabolic equation with double nonlinearity, $N$-functions, estimate for the decay rate of a solution.
Mots-clés : existence of a solution
@article{SM_2016_207_1_a0,
     author = {\`E. R. Andriyanova and F. Kh. Mukminov},
     title = {Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity},
     journal = {Sbornik. Mathematics},
     pages = {1--40},
     year = {2016},
     volume = {207},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/}
}
TY  - JOUR
AU  - È. R. Andriyanova
AU  - F. Kh. Mukminov
TI  - Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1
EP  - 40
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/
LA  - en
ID  - SM_2016_207_1_a0
ER  - 
%0 Journal Article
%A È. R. Andriyanova
%A F. Kh. Mukminov
%T Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity
%J Sbornik. Mathematics
%D 2016
%P 1-40
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/
%G en
%F SM_2016_207_1_a0
È. R. Andriyanova; F. Kh. Mukminov. Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 1-40. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/

[1] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958, 271 pp. ; M. A. Krasnosel'skii, Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961, xi+249 pp. | MR | Zbl | MR | Zbl

[2] E. R. Andriyanova, “Otsenki skorosti ubyvaniya resheniya parabolicheskogo uravneniya s nestepennymi nelineinostyami”, Ufimsk. matem. zhurn., 6:2 (2014), 3–25

[3] E. R. Andriyanova, F. Kh. Mukminov, “Suschestvovanie resheniya parabolicheskogo uravneniya s nestepennymi nelineinostyami”, Ufimsk. matem. zhurn., 6:4 (2014), 32–49

[4] P. A. Raviart, “Sur la résolution de certaines équations paraboliques non linéaires”, J. Functional Analysis, 5:2 (1970), 299–328 | DOI | MR | Zbl

[5] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[6] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[7] G. I. Laptev, “Slabye resheniya kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka s dvoinoi nelineinostyu”, Matem. sb., 188:9 (1997), 83–112 | DOI | MR | Zbl

[8] F. Bernis, “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl

[9] S. Antontsev, S. Shmarev, “Parabolic equations with double variable nonlinearities”, Math. Comput. Simulation, 81:10 (2011), 2018–2032 | DOI | MR | Zbl

[10] S. N. Antontsev, S. I. Shmarev, “Suschestvovanie i edinstvennost reshenii vyrozhdayuschikhsya parabolicheskikh uravnenii s peremennymi pokazatelyami nelineinosti”, Fundament. i prikl. matem., 12:4 (2006), 3–19 ; S. N. Antontsev, S. I. Shmarev, “Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity”, J. Math. Sci. (N. Y.), 150:5 (2008), 2289–2301 | MR | Zbl | DOI

[11] Yu. A. Alkhutov, V. V. Zhikov, “Teoremy suschestvovaniya reshenii parabolicheskikh uravnenii s peremennym poryadkom nelineinosti”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 270, MAIK, M., 2010, 21–32 | MR | Zbl

[12] E. R. Andriyanova, F. Kh. Mukminov, “Stabilizatsiya resheniya parabolicheskogo uravneniya s dvoinoi nelineinostyu”, Matem. sb., 204:9 (2013), 3–28 | DOI | MR | Zbl

[13] L. M. Kozhevnikova, A. A. Leontev, “Ubyvanie resheniya anizotropnogo parabolicheskogo uravneniya s dvoinoi nelineinostyu v neogranichennykh oblastyakh”, Ufimsk. matem. zhurn., 5:1 (2013), 63–82

[14] L. M. Kozhevnikova, A. A. Leontev, “Resheniya anizotropnykh parabolicheskikh uravnenii s dvoinoi nelineinostyu v neogranichennykh oblastyakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 2013, no. 1(30), 82–89 | DOI

[15] L. M. Kozhevnikova, A. A. Leontev, “O resheniyakh anizotropnykh parabolicheskikh uravnenii vysokogo poryadka v neogranichennykh oblastyakh”, Matem. sb., 205:1 (2014), 9–46 | DOI | MR | Zbl

[16] L. M. Kozhevnikova, “Stabilizatsiya reshenii psevdodifferentsialnykh parabolicheskikh uravnenii v neogranichennykh oblastyakh”, Izv. RAN. Ser. matem., 74:2 (2010), 109–130 | DOI | MR | Zbl

[17] R. Kh. Karimov, L. M. Kozhevnikova, “Stabilizatsiya reshenii kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnymi granitsami”, Matem. sb., 201:9 (2010), 3–26 | DOI | MR | Zbl

[18] L. M. Kozhevnikova, F. Kh. Mukminov, “Stabilizatsiya reshenii anizotropnogo kvazilineinogo parabolicheskogo uravneniya v neogranichennykh oblastyakh”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 278, MAIK, M., 2012, 114–128 | MR | Zbl

[19] A. Bamberger, “Étude d'une équation doublement non linéaire”, J. Functional Analysis, 24:2 (1977), 148–155 | DOI | MR | Zbl

[20] A. V. Ivanov, P. Z. Mkrtychyan, V. Yaeger, “Suschestvovanie i edinstvennost regulyarnogo resheniya pervoi nachalno-kraevoi zadachi dlya nekotorogo klassa dvazhdy nelineinykh parabolicheskikh uravnenii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 25, Zap. nauchn. sem. POMI, 213, Nauka, SPb., 1994, 48–65 ; A. V. Ivanov, P. Z. Mkrtychan, W. Jäger, “Existence and uniqueness of regular solution of Cauchy–Dirichlet problem for some class of doubly nonlinear parabolic equations”, J. Math. Sci. (N. Y.), 84:1 (1997), 845–855 | MR | Zbl | DOI

[21] P. Z. Mkrtychyan, “O edinstvennosti resheniya vtoroi nachalno-kraevoi zadachi dlya uravneniya nenyutonovskoi politropicheskoi filtratsii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 24, Zap. nauchn. sem. POMI, 200, Nauka, SPb., 1992, 110–117 ; P. Z. Mkrtychyan, “On the uniqueness of a solution of the second initial boundary-value problem for the equation of non-Newtonian polytropic filtration”, J. Math. Sci. (N. Y.), 77:3 (1995), 3207–3211 | MR | Zbl | DOI

[22] J. Carrillo, P. Wittbold, “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems”, J. Differential Equations, 156:1 (1999), 93–121 | DOI | MR | Zbl

[23] S. N. Kruzhkov, “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81(123):2 (1970), 228–255 | MR | Zbl

[24] N. Calvo, J. I. Díaz, J. Durany, E. Schiavi, C. Vázquez, “On a doubly nonlinear parabolic obstacle problem modelling ice sheet dinamics”, SIAM J. Appl. Math., 63:2 (2002), 683–707 | DOI | MR | Zbl

[25] S. N. Antontsev, S. I. Shmarev, “Extinction of solutions of parabolic equations with variable anisotropic nonlinearities”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 261, MAIK, M., 2008, 16–25 | MR | Zbl

[26] S. N. Antontsev, S. I. Shmarev, “On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 270, MAIK, M., 2010, 33–48 | MR | Zbl

[27] V. V. Zhikov, S. E. Pastukhova, “O svoistve povyshennoi summiruemosti dlya parabolicheskikh sistem peremennogo poryadka nelineinosti”, Matem. zametki, 87:2 (2010), 179–200 | DOI | MR | Zbl

[28] A. G. Korolev, “Teoremy vlozheniya anizotropnykh prostranstv Soboleva–Orlicha”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 1983, no. 1, 32–37 | MR | Zbl

[29] N. Danford, Dzh. T. Shvarts, Lineinye operatory, v. I, Obschaya teoriya, IL, M., 1962, 895 pp. ; N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl