Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 1-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The first mixed problem is investigated for a certain class of parabolic equations with double non-power-law nonlinearities in a cylindrical domain of the form $D=(t>0)\times\Omega$. The domain $\Omega\subset \mathbb R^n$ can be unbounded. The existence of strong solutions in a Sobolev-Orlicz space is proved by the method of Galerkin approximations. A maximum principle is established, and upper and lower bounds characterizing the power-law decay of solution as $t\to \infty$ are proved. The uniqueness of the solution is proved under certain additional assumptions. Bibliography: 29 titles.
Keywords: parabolic equation with double nonlinearity, $N$-functions, estimate for the decay rate of a solution.
Mots-clés : existence of a solution
@article{SM_2016_207_1_a0,
     author = {\`E. R. Andriyanova and F. Kh. Mukminov},
     title = {Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity},
     journal = {Sbornik. Mathematics},
     pages = {1--40},
     publisher = {mathdoc},
     volume = {207},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/}
}
TY  - JOUR
AU  - È. R. Andriyanova
AU  - F. Kh. Mukminov
TI  - Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1
EP  - 40
VL  - 207
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/
LA  - en
ID  - SM_2016_207_1_a0
ER  - 
%0 Journal Article
%A È. R. Andriyanova
%A F. Kh. Mukminov
%T Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity
%J Sbornik. Mathematics
%D 2016
%P 1-40
%V 207
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/
%G en
%F SM_2016_207_1_a0
È. R. Andriyanova; F. Kh. Mukminov. Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 1-40. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/