Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 1-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The first mixed problem is investigated for a certain class of parabolic equations with double non-power-law nonlinearities in a cylindrical domain of the form $D=(t>0)\times\Omega$. The domain $\Omega\subset \mathbb R^n$ can be unbounded. The existence of strong solutions in a Sobolev-Orlicz space is proved by the method of Galerkin approximations. A maximum principle is established, and upper and lower bounds characterizing the power-law decay of solution as $t\to \infty$ are proved. The uniqueness of the solution is proved under certain additional assumptions.
Bibliography: 29 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
parabolic equation with double nonlinearity, $N$-functions, estimate for the decay rate of a solution.
Mots-clés : existence of a solution
                    
                  
                
                
                Mots-clés : existence of a solution
@article{SM_2016_207_1_a0,
     author = {\`E. R. Andriyanova and F. Kh. Mukminov},
     title = {Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity},
     journal = {Sbornik. Mathematics},
     pages = {1--40},
     publisher = {mathdoc},
     volume = {207},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/}
}
                      
                      
                    TY - JOUR AU - È. R. Andriyanova AU - F. Kh. Mukminov TI - Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity JO - Sbornik. Mathematics PY - 2016 SP - 1 EP - 40 VL - 207 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/ LA - en ID - SM_2016_207_1_a0 ER -
%0 Journal Article %A È. R. Andriyanova %A F. Kh. Mukminov %T Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity %J Sbornik. Mathematics %D 2016 %P 1-40 %V 207 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/ %G en %F SM_2016_207_1_a0
È. R. Andriyanova; F. Kh. Mukminov. Existence and qualitative properties of~a~solution of~the~first mixed problem for a~parabolic~equation with non-power-law double nonlinearity. Sbornik. Mathematics, Tome 207 (2016) no. 1, pp. 1-40. http://geodesic.mathdoc.fr/item/SM_2016_207_1_a0/
