A sharp lower bound for the sum of a sine series with convex coefficients
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1743-1777 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sum of a sine series $g(\mathbf b,x)=\sum_{k=1}^\infty b_k\sin kx$ with coefficients forming a convex sequence $\mathbf b$ is known to be positive on the interval $(0,\pi)$. Its values near zero are conventionally evaluated using the Salem function $v(\mathbf b,x)=x\sum_{k=1}^{m(x)} kb_k$, $m(x)=[\pi/x]$. In this paper it is proved that $2\pi^{-2}v(\mathbf b,x)$ is not a minorant for $g(\mathbf b,x)$. The modified Salem function $v_0(\mathbf b,x)=x\bigl(\sum_{k=1}^{m(x)-1} kb_k+(1/2)m(x)b_{m(x)}\bigr)$ is shown to satisfy the lower bound $g(\mathbf b,x)>2\pi^{-2}v_0(\mathbf b,x)$ in some right neighbourhood of zero. This estimate is shown to be sharp on the class of convex sequences $\mathbf b$. Moreover, the upper bound for $g(\mathbf b,x)$ is refined on the class of monotone sequences $\mathbf b$. Bibliography: 11 titles.
Keywords: sine series with monotone coefficients, sine series with convex coefficients.
@article{SM_2016_207_12_a6,
     author = {A. P. Solodov},
     title = {A~sharp lower bound for the sum of a~sine series with convex coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1743--1777},
     year = {2016},
     volume = {207},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a6/}
}
TY  - JOUR
AU  - A. P. Solodov
TI  - A sharp lower bound for the sum of a sine series with convex coefficients
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1743
EP  - 1777
VL  - 207
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a6/
LA  - en
ID  - SM_2016_207_12_a6
ER  - 
%0 Journal Article
%A A. P. Solodov
%T A sharp lower bound for the sum of a sine series with convex coefficients
%J Sbornik. Mathematics
%D 2016
%P 1743-1777
%V 207
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a6/
%G en
%F SM_2016_207_12_a6
A. P. Solodov. A sharp lower bound for the sum of a sine series with convex coefficients. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1743-1777. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a6/

[1] S. A. Telyakovskiĭ, “On the behavior near the origin of the sine series with convex coefficients”, Publ. Inst. Math. (Beograd), 58(72) (1995), 43–50 | MR | Zbl

[2] S. A. Telyakovskii, “K voprosu o povedenii ryadov po sinusam vblizi nulya”, Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi, 21:1-2 (2000) (2002), 47–53 | MR

[3] A. Yu. Popov, “Estimates of the sums of sine series with monotone coefficients of certain classes”, Math. Notes, 74:6 (2003), 829–840 | DOI | DOI | MR | Zbl

[4] R. Salem, “Détermination de l'ordre de grandeur á l'origine de certaines séries trigonométriques”, C. R. Acad. Sci. Paris, 186 (1928), 1804–1806 | Zbl

[5] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[6] G. H. Hardy, W. W. Rogosinski, “Notes on Fourier series. III. Asymptotic formulae for the sums of certain trigonometrical series”, Quart. J. Math., Oxford Ser., 16 (1945), 49–58 | MR | Zbl

[7] S. Aljančić, R. Bojanić, M. Tomić, “Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones”, Acad. Serbe Sci. Publ. Inst. Math., 10 (1956), 101–120 | MR | Zbl

[8] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[9] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | MR | Zbl | Zbl

[10] A. Yu. Popov, A. P. Solodov, “Exact lower estimate of the upper limit of the ratio of the sum of sine series with monotone coefficients to its majorant”, Mosc. Univ. Math. Bull., 69:4 (2014), 169–173 | DOI | MR | Zbl

[11] P. Hartman, A. Wintner, “On sine series with monotone coefficients”, J. London Math. Soc., 28:1 (1953), 102–104 | DOI | MR | Zbl