Mots-clés : Fejér kernels
@article{SM_2016_207_12_a5,
author = {A. O. Radomskii},
title = {On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials},
journal = {Sbornik. Mathematics},
pages = {1729--1742},
year = {2016},
volume = {207},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a5/}
}
TY - JOUR
AU - A. O. Radomskii
TI - On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials
JO - Sbornik. Mathematics
PY - 2016
SP - 1729
EP - 1742
VL - 207
IS - 12
UR - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a5/
LA - en
ID - SM_2016_207_12_a5
ER -
A. O. Radomskii. On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1729-1742. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a5/
[1] B. S. Kashin, V. N. Temlyakov, “On a certain norm and related applications”, Math. Notes, 64:4 (1998), 551–554 | DOI | DOI | MR | Zbl
[2] B. S. Kashin, V. N. Temlyakov, “Ob odnoi norme i approksimatsionnykh kharakteristikakh klassov funktsii mnogikh peremennykh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sbornik statei, ed. S. M. Nikolskii, AFTs, M., 1999, 69–99 | MR
[3] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[4] P. G. Grigor'ev, “On a sequence of trigonometric polynomials”, Math. Notes, 61:6 (1997), 780–783 | DOI | DOI | MR | Zbl
[5] A. O. Radomskii, “On the possibility of strengthening Sidon-type inequalities”, Math. Notes, 94:5 (2013), 829–833 | DOI | DOI | MR | Zbl
[6] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, vii+354 pp. | MR | MR | Zbl | Zbl
[7] B. S. Kashin, “On certain properties of the space of trigonometric polynomials with uniform norm”, Proc. Steklov Inst. Math., 145 (1981), 121–127 | MR | Zbl
[8] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues (Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill., 1968, 235–255 | MR | Zbl