On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1729-1742
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A nontrivial lower bound for the quantity $\sup_{t\in L}\|t\|_{\mathrm{QC}}/\|t\|_{\infty}$ is obtained for a subspace $L$ of $ \mathrm{T}(2^{m}-1)$ which satisfies a certain dimension condition.
Bibliography: 8 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
trigonometric polynomials, Rademacher functions.
Mots-clés : Fejér kernels
                    
                  
                
                
                Mots-clés : Fejér kernels
@article{SM_2016_207_12_a5,
     author = {A. O. Radomskii},
     title = {On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1729--1742},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a5/}
}
                      
                      
                    TY  - JOUR
AU  - A. O. Radomskii
TI  - On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1729
EP  - 1742
VL  - 207
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a5/
LA  - en
ID  - SM_2016_207_12_a5
ER  - 
                      
                      
                    A. O. Radomskii. On nonequivalence of the $\mathrm{C}$- and $\mathrm{QC}$-norms in the space of trigonometric polynomials. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1729-1742. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a5/
                  
                