Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1709-1728
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Methods are given for the approximate calculation of a branch of a resonance oscillation when it bifurcates from a stationary point and for optimizing this branch with respect to the nonsymmetry coefficient, which is defined as the ratio between the largest and the smallest values of the amplitude. It is shown that the optimal values of the base amplitudes are the coefficients of the corresponding Fejér series. The largest value of the nonsymmetry coefficient is calculated exactly.
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
smooth functional, periodic extremal, nonsymmetry coefficient, Fejér trigonometric series, Lyapunov-Schmidt reduction.
Mots-clés : bifurcation
                    
                  
                
                
                Mots-clés : bifurcation
@article{SM_2016_207_12_a4,
     author = {D. V. Kostin},
     title = {Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient},
     journal = {Sbornik. Mathematics},
     pages = {1709--1728},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/}
}
                      
                      
                    TY - JOUR AU - D. V. Kostin TI - Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient JO - Sbornik. Mathematics PY - 2016 SP - 1709 EP - 1728 VL - 207 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/ LA - en ID - SM_2016_207_12_a4 ER -
%0 Journal Article %A D. V. Kostin %T Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient %J Sbornik. Mathematics %D 2016 %P 1709-1728 %V 207 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/ %G en %F SM_2016_207_12_a4
D. V. Kostin. Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1709-1728. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/
