Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1709-1728 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methods are given for the approximate calculation of a branch of a resonance oscillation when it bifurcates from a stationary point and for optimizing this branch with respect to the nonsymmetry coefficient, which is defined as the ratio between the largest and the smallest values of the amplitude. It is shown that the optimal values of the base amplitudes are the coefficients of the corresponding Fejér series. The largest value of the nonsymmetry coefficient is calculated exactly. Bibliography: 18 titles.
Keywords: smooth functional, periodic extremal, nonsymmetry coefficient, Lyapunov-Schmidt reduction.
Mots-clés : bifurcation, Fejér trigonometric series
@article{SM_2016_207_12_a4,
     author = {D. V. Kostin},
     title = {Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient},
     journal = {Sbornik. Mathematics},
     pages = {1709--1728},
     year = {2016},
     volume = {207},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/}
}
TY  - JOUR
AU  - D. V. Kostin
TI  - Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1709
EP  - 1728
VL  - 207
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/
LA  - en
ID  - SM_2016_207_12_a4
ER  - 
%0 Journal Article
%A D. V. Kostin
%T Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
%J Sbornik. Mathematics
%D 2016
%P 1709-1728
%V 207
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/
%G en
%F SM_2016_207_12_a4
D. V. Kostin. Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1709-1728. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/

[1] S. S. Sarkisyan, L. V. Golovanov, Prognozirovanie razvitiya bolshikh sistem, Statistika, M., 1975, 192 pp.

[2] D. V. Kostin, “K voprosu optimizatsii zakriticheskogo izgiba uprugoi lopatki turbiny”, Nasosy. Turbiny. Sistemy, 2012, no. 3(4), 67–72

[3] D. V. Kostin, “Analiz izgibov uprugoi lopatki turbiny s uchetom neodnorodnosti materiala”, Nasosy. Turbiny. Sistemy, 2013, no. 3(8), 56–61

[4] B. M. Darinskii, Yu. I. Sapronov, S. L. Tsarev, “Bifurcations of extremals of Fredholm functionals”, J. Math. Sci. (N. Y.), 145:6 (2007), 5311–5453 | DOI | MR | Zbl

[5] Yu. I. Sapronov, S. L. Tsarev, “Global comparison of finite-dimensional reduction schemes in smooth variational problems”, Math. Notes, 67:5 (2000), 631–638 | DOI | DOI | MR | Zbl

[6] S. L. Tsarev, “Sravnenie konechnomernykh reduktsii v gladkikh variatsionnykh zadachakh c simmetriei”, Sovr. matem. i ee prilozheniya, 7, In-t kibernetiki AN Gruzii, Tbilisi, 2003, 86–90

[7] V. A. Kostin, D. V. Kostin, Yu. I. Sapronov, “Maxwell–Fejér polynomials and optimization of polyharmonic impulse”, Dokl. Math., 86:1 (2012), 512–514 | DOI | Zbl

[8] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965, 549 pp.

[9] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser, Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl

[10] A. V. Zachepa, Yu. I. Sapronov, “O bifurkatsii ekstremalei fredgolmova funktsionala iz vyrozhdennoi tochki minimuma s osobennostyu $3$-mernoi sborki”, Tr. matem. f-ta (novaya seriya), 9, Izd-vo VGU, Voronezh, 2005, 57–71

[11] A. P. Karpova, U. V. Ladykina, Yu. I. Sapronov, “Bifurkatsionnyi analiz fredgolmovykh uravnenii s krugovoi simmetriei i ego prilozheniya”, Matem. modeli i operatornye uravneniya, 5, ch. 1, “Sozvezdie”, VGU, Voronezh, 2008, 45–90

[12] E. V. Derunova, Yu. I. Sapronov, “Application of normalized key functions in a problem of branching of periodic extremals”, Russian Math. (Iz. VUZ), 59:8 (2015), 9–18 | DOI | Zbl

[13] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, 2-e izd., Nauka, M., 1979, 415 pp. | MR | Zbl

[14] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, R.I., 1959, ix+421 pp. | MR | Zbl | Zbl

[15] T. Poston, I. Stewart, Catastrophe theory and its applications, Surveys and Reference Works in Mathematics, 2, Pitman, London–San Francisco, Calif.–Melbourne, 1978, xviii+491 pp. | MR | MR | Zbl | Zbl

[16] R. Gilmore, Catastrophe theory for scientists and engineers, John Wiley Sons, New York, 1981, xvii+666 pp. | MR | Zbl | Zbl

[17] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl

[18] P. K. Suetin, Nachala matematicheskoi teorii antenn, Insvyazizdat, M., 2008, 228 pp.