Mots-clés : bifurcation, Fejér trigonometric series
@article{SM_2016_207_12_a4,
author = {D. V. Kostin},
title = {Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient},
journal = {Sbornik. Mathematics},
pages = {1709--1728},
year = {2016},
volume = {207},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/}
}
TY - JOUR AU - D. V. Kostin TI - Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient JO - Sbornik. Mathematics PY - 2016 SP - 1709 EP - 1728 VL - 207 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/ LA - en ID - SM_2016_207_12_a4 ER -
D. V. Kostin. Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1709-1728. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/
[1] S. S. Sarkisyan, L. V. Golovanov, Prognozirovanie razvitiya bolshikh sistem, Statistika, M., 1975, 192 pp.
[2] D. V. Kostin, “K voprosu optimizatsii zakriticheskogo izgiba uprugoi lopatki turbiny”, Nasosy. Turbiny. Sistemy, 2012, no. 3(4), 67–72
[3] D. V. Kostin, “Analiz izgibov uprugoi lopatki turbiny s uchetom neodnorodnosti materiala”, Nasosy. Turbiny. Sistemy, 2013, no. 3(8), 56–61
[4] B. M. Darinskii, Yu. I. Sapronov, S. L. Tsarev, “Bifurcations of extremals of Fredholm functionals”, J. Math. Sci. (N. Y.), 145:6 (2007), 5311–5453 | DOI | MR | Zbl
[5] Yu. I. Sapronov, S. L. Tsarev, “Global comparison of finite-dimensional reduction schemes in smooth variational problems”, Math. Notes, 67:5 (2000), 631–638 | DOI | DOI | MR | Zbl
[6] S. L. Tsarev, “Sravnenie konechnomernykh reduktsii v gladkikh variatsionnykh zadachakh c simmetriei”, Sovr. matem. i ee prilozheniya, 7, In-t kibernetiki AN Gruzii, Tbilisi, 2003, 86–90
[7] V. A. Kostin, D. V. Kostin, Yu. I. Sapronov, “Maxwell–Fejér polynomials and optimization of polyharmonic impulse”, Dokl. Math., 86:1 (2012), 512–514 | DOI | Zbl
[8] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965, 549 pp.
[9] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser, Boston, MA, 1985, xi+382 pp. | DOI | MR | MR | Zbl | Zbl
[10] A. V. Zachepa, Yu. I. Sapronov, “O bifurkatsii ekstremalei fredgolmova funktsionala iz vyrozhdennoi tochki minimuma s osobennostyu $3$-mernoi sborki”, Tr. matem. f-ta (novaya seriya), 9, Izd-vo VGU, Voronezh, 2005, 57–71
[11] A. P. Karpova, U. V. Ladykina, Yu. I. Sapronov, “Bifurkatsionnyi analiz fredgolmovykh uravnenii s krugovoi simmetriei i ego prilozheniya”, Matem. modeli i operatornye uravneniya, 5, ch. 1, “Sozvezdie”, VGU, Voronezh, 2008, 45–90
[12] E. V. Derunova, Yu. I. Sapronov, “Application of normalized key functions in a problem of branching of periodic extremals”, Russian Math. (Iz. VUZ), 59:8 (2015), 9–18 | DOI | Zbl
[13] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, 2-e izd., Nauka, M., 1979, 415 pp. | MR | Zbl
[14] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, R.I., 1959, ix+421 pp. | MR | Zbl | Zbl
[15] T. Poston, I. Stewart, Catastrophe theory and its applications, Surveys and Reference Works in Mathematics, 2, Pitman, London–San Francisco, Calif.–Melbourne, 1978, xviii+491 pp. | MR | MR | Zbl | Zbl
[16] R. Gilmore, Catastrophe theory for scientists and engineers, John Wiley Sons, New York, 1981, xvii+666 pp. | MR | Zbl | Zbl
[17] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR | Zbl
[18] P. K. Suetin, Nachala matematicheskoi teorii antenn, Insvyazizdat, M., 2008, 228 pp.