Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1709-1728

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods are given for the approximate calculation of a branch of a resonance oscillation when it bifurcates from a stationary point and for optimizing this branch with respect to the nonsymmetry coefficient, which is defined as the ratio between the largest and the smallest values of the amplitude. It is shown that the optimal values of the base amplitudes are the coefficients of the corresponding Fejér series. The largest value of the nonsymmetry coefficient is calculated exactly. Bibliography: 18 titles.
Keywords: smooth functional, periodic extremal, nonsymmetry coefficient, Fejér trigonometric series, Lyapunov-Schmidt reduction.
Mots-clés : bifurcation
@article{SM_2016_207_12_a4,
     author = {D. V. Kostin},
     title = {Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient},
     journal = {Sbornik. Mathematics},
     pages = {1709--1728},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/}
}
TY  - JOUR
AU  - D. V. Kostin
TI  - Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1709
EP  - 1728
VL  - 207
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/
LA  - en
ID  - SM_2016_207_12_a4
ER  - 
%0 Journal Article
%A D. V. Kostin
%T Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient
%J Sbornik. Mathematics
%D 2016
%P 1709-1728
%V 207
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/
%G en
%F SM_2016_207_12_a4
D. V. Kostin. Bifurcations of resonance oscillations and optimization of the trigonometric impulse by the nonsymmetry coefficient. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1709-1728. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a4/