Volume formulae for fibred cone-manifolds with spherical geometry
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1693-1708
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We classify cone-manifold structures on a three-dimensional sphere whose singular set consists of fibres of a Seifert fibration. We describe domains of existence of a spherical structure on these cone-manifolds in terms of cone angles, and obtain explicit analytic formulae for their volumes.
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
spherical geometry, cone-manifold, Seifert fibration.
                    
                    
                    
                  
                
                
                @article{SM_2016_207_12_a3,
     author = {A. A. Kolpakov},
     title = {Volume formulae for fibred cone-manifolds with spherical geometry},
     journal = {Sbornik. Mathematics},
     pages = {1693--1708},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/}
}
                      
                      
                    A. A. Kolpakov. Volume formulae for fibred cone-manifolds with spherical geometry. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1693-1708. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/
