Volume formulae for fibred cone-manifolds with spherical geometry
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1693-1708 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify cone-manifold structures on a three-dimensional sphere whose singular set consists of fibres of a Seifert fibration. We describe domains of existence of a spherical structure on these cone-manifolds in terms of cone angles, and obtain explicit analytic formulae for their volumes. Bibliography: 18 titles.
Keywords: spherical geometry, cone-manifold, Seifert fibration.
@article{SM_2016_207_12_a3,
     author = {A. A. Kolpakov},
     title = {Volume formulae for fibred cone-manifolds with spherical geometry},
     journal = {Sbornik. Mathematics},
     pages = {1693--1708},
     year = {2016},
     volume = {207},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/}
}
TY  - JOUR
AU  - A. A. Kolpakov
TI  - Volume formulae for fibred cone-manifolds with spherical geometry
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1693
EP  - 1708
VL  - 207
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/
LA  - en
ID  - SM_2016_207_12_a3
ER  - 
%0 Journal Article
%A A. A. Kolpakov
%T Volume formulae for fibred cone-manifolds with spherical geometry
%J Sbornik. Mathematics
%D 2016
%P 1693-1708
%V 207
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/
%G en
%F SM_2016_207_12_a3
A. A. Kolpakov. Volume formulae for fibred cone-manifolds with spherical geometry. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1693-1708. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/

[1] W. Thurston, The geometry and topology of three-manifolds, Princeton lecture notes, unpublished, 1980, vii+360 pp.; electronic version, 2002 http://msri.org/publications/books/gt3m/

[2] A. T. Fomenko, S. V. Matveev, Algorithmic and computer methods for three-manifolds, Math. Appl., 425, Kluwer Acad. Publ., Dordrecht, 1997, xii+334 pp. | DOI | MR | Zbl | Zbl

[3] P. Scott, “The geometries of 3-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl

[4] H. Seifert, “Topologie dreidimensionaler gefaserter Räume”, Acta Math., 60:1 (1933), 147–238 | DOI | MR | Zbl

[5] J. Porti, “Regenerating hyperbolic and spherical cone structures from Euclidean ones”, Topology, 37:2 (1998), 365–392 | DOI | MR | Zbl

[6] H. Weiss, “Global rigidity of 3-dimensional cone-manifolds”, J. Differential Geom., 76:3 (2007), 495–523 | MR | Zbl

[7] H. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On a remarkable polyhedron geometrizing the figure eight cone manifolds”, J. Math. Sci. Univ. Tokyo, 2:3 (1995), 501–561 | MR | Zbl

[8] A. Mednykh, A. Rasskazov, “Volumes and degeneration of cone-structures on the figure-eight knot”, Tokyo J. Math., 29:2 (2006), 445–464 | DOI | MR | Zbl

[9] J. Porti, “Spherical cone structures on 2–bridge knots and links”, Kobe J. Math., 21:1-2 (2004), 61–70 | MR | Zbl

[10] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Grad. Texts in Math., 149, Springer-Verlag, New York, 1994, xii+747 pp. | DOI | MR | Zbl

[11] H. Hopf, “Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche”, Math. Ann., 104:1 (1931), 637–665 | DOI | MR | Zbl

[12] M. Culler, “Lifting representations to covering groups”, Adv. in Math., 59:1 (1986), 64–70 | DOI | MR | Zbl

[13] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “Volumes and Chern–Simons invariants of cyclic coverings over rational knots”, Topology and Teichmüller spaces (Katinkulta, 1995), World Sci. Publ., River Edge, NJ, 1996, 31–35 | MR | Zbl

[14] C. D. Hodgson, Degeneration and regeneration of geometric structures on three-manifolds, Ph.D. thesis, Princeton Univ., 1986, vii+169 pp.

[15] R. Buckman, N. Schmitt, Spherical polygons and unitarization, Undergraduate research at GANG, 2002, 19 pp. http://www.gang.umass.edu/reu/2002/polygon.html

[16] Yu. G. Reshetnyak, “Ob odnom prieme prevrascheniya nevypukloi lomanoi v vypukluyu”, UMN, 12:3(75) (1957), 189–191 | MR | Zbl

[17] B. Grünbaum, J. Zaks, “Convexification of polygons by flips and by flipturns”, Discrete Math., 241:1-3 (2001), 333–342 | DOI | MR | Zbl

[18] J.-M. Schlenker, “Small deformations of polygons and polyhedra”, Trans. Amer. Math. Soc., 359:5 (2007), 2155–2189 | DOI | MR | Zbl