Volume formulae for fibred cone-manifolds with spherical geometry
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1693-1708

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify cone-manifold structures on a three-dimensional sphere whose singular set consists of fibres of a Seifert fibration. We describe domains of existence of a spherical structure on these cone-manifolds in terms of cone angles, and obtain explicit analytic formulae for their volumes. Bibliography: 18 titles.
Keywords: spherical geometry, cone-manifold, Seifert fibration.
@article{SM_2016_207_12_a3,
     author = {A. A. Kolpakov},
     title = {Volume formulae for fibred cone-manifolds with spherical geometry},
     journal = {Sbornik. Mathematics},
     pages = {1693--1708},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/}
}
TY  - JOUR
AU  - A. A. Kolpakov
TI  - Volume formulae for fibred cone-manifolds with spherical geometry
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1693
EP  - 1708
VL  - 207
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/
LA  - en
ID  - SM_2016_207_12_a3
ER  - 
%0 Journal Article
%A A. A. Kolpakov
%T Volume formulae for fibred cone-manifolds with spherical geometry
%J Sbornik. Mathematics
%D 2016
%P 1693-1708
%V 207
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/
%G en
%F SM_2016_207_12_a3
A. A. Kolpakov. Volume formulae for fibred cone-manifolds with spherical geometry. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1693-1708. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a3/