Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1674-1692 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the centre of a relatively free associative algebra $F^{(n)}$ with the identity $[x_1,\dots,x_n]=0$ of Lie nilpotency of degree $n=5,6$ over a field of characteristic 0. It is proved that the core $Z^*(F^{(5)})$ of the algebra $F^{(5)}$ (the sum of all ideals of $F^{(5)}$ contained in its centre) is generated as a $\mathrm T$-ideal by the weak Hall polynomial $[[x,y]^{2},y]$. It is also proved that every proper central polynomial of $F^{(5)}$ is contained in the sum of $Z^*(F^{(5)})$ and the $\mathrm T$-space generated by $[[x,y]^{2}, z]$ and the commutator $[x_1,\dots, x_4]$ of degree 4. This implies that the centre of $F^{(5)}$ is contained in the $\mathrm T$-ideal generated by the commutator of degree 4. Similar results are obtained for $F^{(6)}$; in particular, it is proved that the core $Z^{*}(F^{(6)})$ is generated as a $\mathrm T$-ideal by the commutator of degree 5. Bibliography: 15 titles.
Keywords: identities of Lie nilpotency of degrees 5 and 6, proper polynomial, extended Grassmann algebra, superalgebra, Grassmann hull, Hall polynomials.
Mots-clés : centre, core
@article{SM_2016_207_12_a2,
     author = {A. V. Grishin and S. V. Pchelintsev},
     title = {Proper central and core polynomials of relatively free associative algebras with identity of {Lie} nilpotency of degrees 5 and~6},
     journal = {Sbornik. Mathematics},
     pages = {1674--1692},
     year = {2016},
     volume = {207},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a2/}
}
TY  - JOUR
AU  - A. V. Grishin
AU  - S. V. Pchelintsev
TI  - Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1674
EP  - 1692
VL  - 207
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a2/
LA  - en
ID  - SM_2016_207_12_a2
ER  - 
%0 Journal Article
%A A. V. Grishin
%A S. V. Pchelintsev
%T Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6
%J Sbornik. Mathematics
%D 2016
%P 1674-1692
%V 207
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a2/
%G en
%F SM_2016_207_12_a2
A. V. Grishin; S. V. Pchelintsev. Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1674-1692. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a2/

[1] V. N. Latyshev, “O vybore bazy v odnom $\mathrm T$-ideale”, Sib. matem. zhurn., 4:5 (1963), 1122–1127 | Zbl

[2] V. N. Latyshev, “O konechnoi porozhdennosti $\mathrm T$-ideala s elementom $[x_1,x_2,x_3,x_4]$”, Sib. matem. zhurn., 6:6 (1965), 1432–1434 | MR | Zbl

[3] D. Krakowski, A. Regev, “The polynomial identities of the Grassman algebra”, Trans. Amer. Math. Soc., 181 (1973), 429–438 | DOI | MR | Zbl

[4] I. B. Volichenko, $\mathrm T$-ideal, porozhdennyi elementom $[x_1,x_2,x_3,x_4]$, Preprint No 22, In-t matem. AN BSSR, Minsk, 1978, 13 pp.

[5] A. V. Grishin, L. M. Tsybulya, A. A. Shokola, “On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras”, J. Math. Sci. (N. Y.), 177:6 (2011), 868–877 | DOI | MR | Zbl

[6] A. V. Grishin, S. V. Pchelintsev, “On centres of relatively free associative algebras with a Lie nilpotency identity”, Sb. Math., 206:11 (2015), 1610–1627 | DOI | DOI | MR

[7] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative, Pure Appl. Math., 104, Academic Press, Inc., New York–London, 1982, xi+371 pp. | MR | MR | Zbl | Zbl

[8] A. R. Kemer, “Varieties and $Z_2$-graded algebras”, Math. USSR-Izv., 25:2 (1985), 359–374 | DOI | MR | Zbl

[9] A. R. Kemer, “Finite basis property of identities of associative algebras”, Algebra Logic, 26:5 (1987), 362–397 | DOI | MR | Zbl

[10] E. I. Zelmanov, “O razreshimosti iordanovykh nil-algebr”, Issledovaniya po teorii kolets i algebr, Tr. In-ta matem. SO AN SSSR, 16, Nauka, Novosibirsk, 1989, 37–54 | MR

[11] E. I. Zel'manov, I. P. Shestakov, “Prime alternative superalgebras and nilpotence of the radical of a free alternative algebra”, Math. USSR-Izv., 37:1 (1991), 19–36 | DOI | MR | Zbl

[12] I. P. Shestakov, “Free Malcev superalgebra on one odd generator”, J. Algebra Appl., 2:4 (2003), 451–461 | DOI | MR | Zbl

[13] I. Shestakov, N. Zhukavets, “The free alternative superalgebra on one odd generator”, Internat. J. Algebra Comput., 17:5-6 (2007), 1215–1247 | DOI | MR | Zbl

[14] S. V. Pchelintsev, I. P. Shestakov, “Prime $(-1,1)$ and Jordan monsters and superalgebras of vector type”, J. Algebra, 423 (2015), 54–86 | DOI | MR | Zbl

[15] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers, New York–London, 1962, ix+331 pp. | MR | MR | Zbl | Zbl