On the uniqueness of series in the Franklin system
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1650-1673
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove: a) a uniqueness theorem for everywhere convergent series in the Franklin system; b) a uniqueness theorem for Franklin series that converge in measure, whose least upper bound of the sequence of modules of partial sums is finite everywhere, except possibly on a countable set, and whose coefficients satisfy a certain necessary condition.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Franklin system, Cantor's theorem, uniqueness theorem.
                    
                    
                    
                  
                
                
                @article{SM_2016_207_12_a1,
     author = {G. G. Gevorkyan},
     title = {On the uniqueness of series in the {Franklin} system},
     journal = {Sbornik. Mathematics},
     pages = {1650--1673},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/}
}
                      
                      
                    G. G. Gevorkyan. On the uniqueness of series in the Franklin system. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1650-1673. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/
