On the uniqueness of series in the Franklin system
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1650-1673 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove: a) a uniqueness theorem for everywhere convergent series in the Franklin system; b) a uniqueness theorem for Franklin series that converge in measure, whose least upper bound of the sequence of modules of partial sums is finite everywhere, except possibly on a countable set, and whose coefficients satisfy a certain necessary condition. Bibliography: 16 titles.
Keywords: Franklin system, Cantor's theorem, uniqueness theorem.
@article{SM_2016_207_12_a1,
     author = {G. G. Gevorkyan},
     title = {On the uniqueness of series in the {Franklin} system},
     journal = {Sbornik. Mathematics},
     pages = {1650--1673},
     year = {2016},
     volume = {207},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On the uniqueness of series in the Franklin system
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1650
EP  - 1673
VL  - 207
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/
LA  - en
ID  - SM_2016_207_12_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On the uniqueness of series in the Franklin system
%J Sbornik. Mathematics
%D 2016
%P 1650-1673
%V 207
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/
%G en
%F SM_2016_207_12_a1
G. G. Gevorkyan. On the uniqueness of series in the Franklin system. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1650-1673. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/

[1] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 | DOI | MR | Zbl

[2] Z. Ciesielski, “Properties of the orthonormal Franklin system”, Studia Math., 23:2 (1963), 141–157 | MR | Zbl

[3] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27:3 (1966), 289–323 | MR | Zbl

[4] Z. Ciesielski, A. Kamont, “Survey on the orthogonal Franklin system”, Approximation theory, DARBA, Sofia, 2002, 84–132 pp. | MR | Zbl

[5] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[6] P. L. Ul'yanov, “Solved and unsolved problems in the theory of trigonometric and orthogonal series”, Russian Math. Surveys, 19:1 (1964), 1–62 | DOI | MR | Zbl

[7] F. G. Arutyunyan, “O edinstvennosti ryadov po sisteme Khaara”, Dokl. AN Arm. SSR, 38:3 (1964), 129–134 | MR | Zbl

[8] M. B. Petrovskaya, “O nul-ryadakh po sisteme Khaara i mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 28:4 (1964), 773–798 | MR | Zbl

[9] V. A. Skvortsov, “Teorema tipa Kantora dlya sistemy Khaara”, Vestn. Mosk. un-ta. Ser. 1 Matem. Mekh., 1964, no. 5, 3–6 | MR | Zbl

[10] G. Faber, “Über die Orthogonalfunktionen des Herrn Haar”, Deutsche Math.-Ver., 19 (1910), 104–112 | Zbl

[11] F. G. Arutyunyan, A. A. Talalyan, “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl

[12] G. G. Gevorkyan, “Uniqueness theorems for series in the Franklin system”, Math. Notes, 98:5 (2015), 847–851 | DOI | DOI | Zbl

[13] G. G. Gevorkyan, “Ciesielski and Franklin systems”, Approximation and probability, Banach Center Publ., 72, Polish Acad. Sci., Warszaw, 2006, 85–92 | DOI | MR | Zbl

[14] G. Gevorkyan, A. Kamont, “Uniqueness of series with respect to general Franklin systems”, Izv. NAN Armenii. Matem., 44:5 (2009), 3–18 | MR | Zbl

[15] Z. Wronicz, “On a problem of Gevorkyan for the Franklin system”, Opuscula Math., 36:5 (2016), 681–687 | DOI

[16] Proc. Steklov Inst. Math., 190 (1992), 49–76 | MR | Zbl