On the uniqueness of series in the Franklin system
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1650-1673

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove: a) a uniqueness theorem for everywhere convergent series in the Franklin system; b) a uniqueness theorem for Franklin series that converge in measure, whose least upper bound of the sequence of modules of partial sums is finite everywhere, except possibly on a countable set, and whose coefficients satisfy a certain necessary condition. Bibliography: 16 titles.
Keywords: Franklin system, Cantor's theorem, uniqueness theorem.
@article{SM_2016_207_12_a1,
     author = {G. G. Gevorkyan},
     title = {On the uniqueness of series in the {Franklin} system},
     journal = {Sbornik. Mathematics},
     pages = {1650--1673},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On the uniqueness of series in the Franklin system
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1650
EP  - 1673
VL  - 207
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/
LA  - en
ID  - SM_2016_207_12_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On the uniqueness of series in the Franklin system
%J Sbornik. Mathematics
%D 2016
%P 1650-1673
%V 207
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/
%G en
%F SM_2016_207_12_a1
G. G. Gevorkyan. On the uniqueness of series in the Franklin system. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1650-1673. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a1/