Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1625-1649

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.
Keywords: eigenvalue, eigenfunction, continuum of solutions.
Mots-clés : bifurcation point, bifurcation interval
@article{SM_2016_207_12_a0,
     author = {Z. S. Aliyev},
     title = {Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order},
     journal = {Sbornik. Mathematics},
     pages = {1625--1649},
     publisher = {mathdoc},
     volume = {207},
     number = {12},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/}
}
TY  - JOUR
AU  - Z. S. Aliyev
TI  - Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1625
EP  - 1649
VL  - 207
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/
LA  - en
ID  - SM_2016_207_12_a0
ER  - 
%0 Journal Article
%A Z. S. Aliyev
%T Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
%J Sbornik. Mathematics
%D 2016
%P 1625-1649
%V 207
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/
%G en
%F SM_2016_207_12_a0
Z. S. Aliyev. Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1625-1649. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/