Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1625-1649 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.
Keywords: eigenvalue, eigenfunction, continuum of solutions.
Mots-clés : bifurcation point, bifurcation interval
@article{SM_2016_207_12_a0,
     author = {Z. S. Aliyev},
     title = {Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order},
     journal = {Sbornik. Mathematics},
     pages = {1625--1649},
     year = {2016},
     volume = {207},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/}
}
TY  - JOUR
AU  - Z. S. Aliyev
TI  - Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1625
EP  - 1649
VL  - 207
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/
LA  - en
ID  - SM_2016_207_12_a0
ER  - 
%0 Journal Article
%A Z. S. Aliyev
%T Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
%J Sbornik. Mathematics
%D 2016
%P 1625-1649
%V 207
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/
%G en
%F SM_2016_207_12_a0
Z. S. Aliyev. Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1625-1649. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/

[1] Bifurcation theory and nonlinear eigenvalue problems, eds. J. B. Keller, S. Antman, W. A. Benjamin, Inc., New York–Amsterdam, 1969, xiv+434 pp. | MR | Zbl | Zbl

[2] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book The Macmillan Co., New York, 1964, xi+395 pp. | MR | MR | Zbl | Zbl

[3] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl

[4] L. Nirenberg, Topics in nonlinear functional analysis, Courant Inst. of Math. Sci., New York, 1974, viii+259 pp. | MR | Zbl | Zbl

[5] R. W. Dickey, Bifurcation problems in nonlinear elasticity, Res. Notes Math., 3, Pitman Publishing, London–San Francisco, Calif.–Melbourne, 1976, iii+119 pp. | MR | Zbl

[6] Shui-Nee Chow, J. K. Hale, Methods of bifurcation theory, Grundlehren Math. Wiss., 251, Springer-Verlag, New York–Berlin, 1982, xv+515 pp. | DOI | MR | Zbl

[7] A. P. Makhmudov, Osnovy nelineinogo spektralnogo analiza, Izd-vo Azerbaidzhanskogo gos. un-ta im. S. M. Kirova, Baku, 1984, 124 pp. | MR | Zbl

[8] J. Ize, “Topological bifurcation”, Topological nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 15, Boston, MA, Birkhäuser Boston, 1995, 341–463 | DOI | MR | Zbl

[9] J. López-Gómez, Spectral theory and nonlinear functional analysis, Chapman Hall/CRC Res. Notes Math., 426, Chapman Hall/CRC, Boca Raton, FL, 2001, xii+265 pp. | DOI | MR | Zbl

[10] Tian Ma, Shouhong Wang, Bifurcarion theory and applications, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 53, World Sci. Publ., Hackensack, NJ, 2005, xiv+375 pp. | DOI | MR | Zbl

[11] P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems”, J. Functional Analysis, 7:3 (1971), 487–513 | DOI | MR | Zbl

[12] P. H. Rabinowitz, “Some aspects on nonlinear eigenvalue problems”, Rocky Mountain J. Math., 3:2 (1973), 161–202 | DOI | MR | Zbl

[13] H. Berestycki, “On some nonlinear Sturm–Liouville problems”, J. Differential Equations, 26:3 (1977), 375–390 | DOI | MR | Zbl

[14] K. Schmitt, H. L. Smith, “On eigenvalue problems for nondifferentiable mappings”, J. Differential Equations, 33:3 (1979), 294–319 | DOI | MR | Zbl

[15] R. Chiappinelli, “On eigenvalues and bifurcation for nonlinear Sturm–Liouville operators”, Boll. Un. Mat. Ital. A (6), 4:1 (1985), 77–83 | MR | Zbl

[16] Z. S. Aliev, “Globalnaya bifurkatsiya reshenii nekotorykh nelineinykh zadach Shturma–Liuvillya”, Vestn. Bakinskogo un-ta. Ser. fiz.-matem. nauk, 2001, no. 2, 115–120

[17] B. P. Rynne, “Bifurcation from zero or infinity in Sturm–Liouville problems which are not linearizable”, J. Math. Anal. Appl., 228:1 (1998), 141–156 | DOI | MR | Zbl

[18] Guowei Dai, “Global bifurcation from intervals for Sturm–Liouville problems which are not linearizable”, Electron. J. Qual. Theory Differ. Equ., 65 (2013), 1–7 | MR | Zbl

[19] A. P. Makhmudov, Z. S. Aliev, “Global bifurcation of solutions of certain nonlinearizable eigenvalue problems”, Differential Equations, 25:1 (1989), 71–76 | MR | Zbl

[20] A. P. Makhmudov, Z. S. Aliyev, “Nondifferentiable perturbations of spectral problems for a pair of selfadjoint operators and global bifurcation”, Soviet Math. (Iz. VUZ), 34:1 (1990), 51–60 | MR | Zbl

[21] Guoqing Chai, “Existence of positive solutions for fourth-order boundary value problem with variable parameters”, Nonlinear Anal., 66:4 (2007), 870–880 | DOI | MR | Zbl

[22] A. C. Lazer, P. J. McKenna, “Global bifurcation and a theorem of Tarantello”, J. Math. Anal. Appl., 181:3 (1994), 648–655 | DOI | MR | Zbl

[23] Yongxiang Li, “Positive solutions of fourth-order boundary value problems with two parameters”, J. Math. Anal. Appl., 281:2 (2003), 477–484 | DOI | MR | Zbl

[24] Ruyun Ma, “Nodal solutions of boundary value problems of fourth-order ordinary differential equations”, J. Math. Anal. Appl., 319:2 (2006), 424–434 | DOI | MR | Zbl

[25] Ru Yun Ma, B. Tompson, “Nodal solutions for a nonlinear fourth-order eigenvalue problem”, Acta Math. Sin. (Engl. Ser.), 24:1 (2008), 27–34 | DOI | MR | Zbl

[26] Ruyun Ma, Jia Xu, “Bifurcation from interval and positive solutions of a nonlinear fourth-order boundary value problem”, Nonlinear Anal., 72:1 (2010), 113–122 | DOI | MR | Zbl

[27] B. P. Rynne, “Infinitely many solutions of superlinear fourth order boundary value problems”, Topol. Methods Nonlinear Anal., 19:2 (2002), 303–312 | MR | Zbl

[28] B. P. Rynne, “Global bifurcation for $2m$th-order boundary value problems and infinitely many solutions of superlinear problems”, J. Differential Equations, 188:2 (2003), 461–472 | DOI | MR | Zbl

[29] J. R. L. Webb, G. Infante, D. Franco, “Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions”, Proc. Roy. Soc. Edinburgh Sect. A, 138:2 (2008), 427–446 | DOI | MR | Zbl

[30] S. A. Janczewsky, “Oscillation theorems for the differential boundary value problems of the fourth order”, Ann. of Math. (2), 29 (1928), 521–542 | DOI | Zbl

[31] Z. S. Aliev, E. A. Agaev, “Ostsillyatsionnye teoremy dlya zadach o sobstvennykh znacheniyakh chetvertogo poryadka”, Vestn. Bakinskogo un-ta. Ser. fiz.-matem. nauk, 2011, no. 2, 40–49

[32] N. B. Kerimov, Z. S. Aliev, E. A. Agaev, “On the oscillation of eigenfunctions of a fourth-order spectral problem”, Dokl. Math., 85:3 (2012), 355–357 | DOI | MR | Zbl

[33] Z. S. Aliev, E. A. Agaev, “Oscillation properties of the eigenfunctions of fourth-order completely regular Sturmian systems”, Dokl. Math., 90:3 (2014), 657–659 | DOI | DOI | MR | Zbl

[34] Z. S. Aliyev, “Some global results for nonlinear fourth order eigenvalue problems”, Cent. Eur. J. Math., 12:12 (2014), 1811–1828 | DOI | MR | Zbl

[35] E. N. Dancer, “On the structure of solutions of non-linear eigenvalue problems”, Indiana Univ. Math. J., 23:11 (1974), 1069–1076 | DOI | MR | Zbl

[36] D. O. Banks, G. J. Kurowski, “A Prüfer transformation for the equation of the vibrating beam”, Trans. Amer. Math. Soc., 199 (1974), 203–222 | DOI | MR | Zbl

[37] D. O. Banks, G. J. Kurowski, “A Prüfer transformation for the equation of a vibrating beam subject to axial forces”, J. Differential Equations, 24 (1977), 57–74 | DOI | MR | Zbl

[38] N. B. Kerimov, Z. S. Aliyev, “On oscillation properties of the eigenfunctions of a fourth order differential operator”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25:4, Math. Mech. (2005), 63–76 | MR | Zbl

[39] Z. S. Aliyev, “Bifurcation from zero or infinity of some fourth order nonlinear problems with spectral parameter in the boundary condition”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 28:4, Math. Mech. (2008), 17–26 | MR | Zbl

[40] P. I. Lizorkin, Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, Nauka, M., 1981, 384 pp. | MR

[41] R. Courant, D. Hilbert, Methoden der mathematischen Physik, Grundlehren Math. Wiss., I, 2. verb. Aufl., Julius Springer, Berlin, 1931, xiv+469 pp. | MR | Zbl

[42] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl