Mots-clés : bifurcation point, bifurcation interval
@article{SM_2016_207_12_a0,
author = {Z. S. Aliyev},
title = {Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order},
journal = {Sbornik. Mathematics},
pages = {1625--1649},
year = {2016},
volume = {207},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/}
}
TY - JOUR AU - Z. S. Aliyev TI - Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order JO - Sbornik. Mathematics PY - 2016 SP - 1625 EP - 1649 VL - 207 IS - 12 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/ LA - en ID - SM_2016_207_12_a0 ER -
%0 Journal Article %A Z. S. Aliyev %T Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order %J Sbornik. Mathematics %D 2016 %P 1625-1649 %V 207 %N 12 %U http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/ %G en %F SM_2016_207_12_a0
Z. S. Aliyev. Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order. Sbornik. Mathematics, Tome 207 (2016) no. 12, pp. 1625-1649. http://geodesic.mathdoc.fr/item/SM_2016_207_12_a0/
[1] Bifurcation theory and nonlinear eigenvalue problems, eds. J. B. Keller, S. Antman, W. A. Benjamin, Inc., New York–Amsterdam, 1969, xiv+434 pp. | MR | Zbl | Zbl
[2] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book The Macmillan Co., New York, 1964, xi+395 pp. | MR | MR | Zbl | Zbl
[3] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | MR | MR | Zbl | Zbl
[4] L. Nirenberg, Topics in nonlinear functional analysis, Courant Inst. of Math. Sci., New York, 1974, viii+259 pp. | MR | Zbl | Zbl
[5] R. W. Dickey, Bifurcation problems in nonlinear elasticity, Res. Notes Math., 3, Pitman Publishing, London–San Francisco, Calif.–Melbourne, 1976, iii+119 pp. | MR | Zbl
[6] Shui-Nee Chow, J. K. Hale, Methods of bifurcation theory, Grundlehren Math. Wiss., 251, Springer-Verlag, New York–Berlin, 1982, xv+515 pp. | DOI | MR | Zbl
[7] A. P. Makhmudov, Osnovy nelineinogo spektralnogo analiza, Izd-vo Azerbaidzhanskogo gos. un-ta im. S. M. Kirova, Baku, 1984, 124 pp. | MR | Zbl
[8] J. Ize, “Topological bifurcation”, Topological nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 15, Boston, MA, Birkhäuser Boston, 1995, 341–463 | DOI | MR | Zbl
[9] J. López-Gómez, Spectral theory and nonlinear functional analysis, Chapman Hall/CRC Res. Notes Math., 426, Chapman Hall/CRC, Boca Raton, FL, 2001, xii+265 pp. | DOI | MR | Zbl
[10] Tian Ma, Shouhong Wang, Bifurcarion theory and applications, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 53, World Sci. Publ., Hackensack, NJ, 2005, xiv+375 pp. | DOI | MR | Zbl
[11] P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems”, J. Functional Analysis, 7:3 (1971), 487–513 | DOI | MR | Zbl
[12] P. H. Rabinowitz, “Some aspects on nonlinear eigenvalue problems”, Rocky Mountain J. Math., 3:2 (1973), 161–202 | DOI | MR | Zbl
[13] H. Berestycki, “On some nonlinear Sturm–Liouville problems”, J. Differential Equations, 26:3 (1977), 375–390 | DOI | MR | Zbl
[14] K. Schmitt, H. L. Smith, “On eigenvalue problems for nondifferentiable mappings”, J. Differential Equations, 33:3 (1979), 294–319 | DOI | MR | Zbl
[15] R. Chiappinelli, “On eigenvalues and bifurcation for nonlinear Sturm–Liouville operators”, Boll. Un. Mat. Ital. A (6), 4:1 (1985), 77–83 | MR | Zbl
[16] Z. S. Aliev, “Globalnaya bifurkatsiya reshenii nekotorykh nelineinykh zadach Shturma–Liuvillya”, Vestn. Bakinskogo un-ta. Ser. fiz.-matem. nauk, 2001, no. 2, 115–120
[17] B. P. Rynne, “Bifurcation from zero or infinity in Sturm–Liouville problems which are not linearizable”, J. Math. Anal. Appl., 228:1 (1998), 141–156 | DOI | MR | Zbl
[18] Guowei Dai, “Global bifurcation from intervals for Sturm–Liouville problems which are not linearizable”, Electron. J. Qual. Theory Differ. Equ., 65 (2013), 1–7 | MR | Zbl
[19] A. P. Makhmudov, Z. S. Aliev, “Global bifurcation of solutions of certain nonlinearizable eigenvalue problems”, Differential Equations, 25:1 (1989), 71–76 | MR | Zbl
[20] A. P. Makhmudov, Z. S. Aliyev, “Nondifferentiable perturbations of spectral problems for a pair of selfadjoint operators and global bifurcation”, Soviet Math. (Iz. VUZ), 34:1 (1990), 51–60 | MR | Zbl
[21] Guoqing Chai, “Existence of positive solutions for fourth-order boundary value problem with variable parameters”, Nonlinear Anal., 66:4 (2007), 870–880 | DOI | MR | Zbl
[22] A. C. Lazer, P. J. McKenna, “Global bifurcation and a theorem of Tarantello”, J. Math. Anal. Appl., 181:3 (1994), 648–655 | DOI | MR | Zbl
[23] Yongxiang Li, “Positive solutions of fourth-order boundary value problems with two parameters”, J. Math. Anal. Appl., 281:2 (2003), 477–484 | DOI | MR | Zbl
[24] Ruyun Ma, “Nodal solutions of boundary value problems of fourth-order ordinary differential equations”, J. Math. Anal. Appl., 319:2 (2006), 424–434 | DOI | MR | Zbl
[25] Ru Yun Ma, B. Tompson, “Nodal solutions for a nonlinear fourth-order eigenvalue problem”, Acta Math. Sin. (Engl. Ser.), 24:1 (2008), 27–34 | DOI | MR | Zbl
[26] Ruyun Ma, Jia Xu, “Bifurcation from interval and positive solutions of a nonlinear fourth-order boundary value problem”, Nonlinear Anal., 72:1 (2010), 113–122 | DOI | MR | Zbl
[27] B. P. Rynne, “Infinitely many solutions of superlinear fourth order boundary value problems”, Topol. Methods Nonlinear Anal., 19:2 (2002), 303–312 | MR | Zbl
[28] B. P. Rynne, “Global bifurcation for $2m$th-order boundary value problems and infinitely many solutions of superlinear problems”, J. Differential Equations, 188:2 (2003), 461–472 | DOI | MR | Zbl
[29] J. R. L. Webb, G. Infante, D. Franco, “Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions”, Proc. Roy. Soc. Edinburgh Sect. A, 138:2 (2008), 427–446 | DOI | MR | Zbl
[30] S. A. Janczewsky, “Oscillation theorems for the differential boundary value problems of the fourth order”, Ann. of Math. (2), 29 (1928), 521–542 | DOI | Zbl
[31] Z. S. Aliev, E. A. Agaev, “Ostsillyatsionnye teoremy dlya zadach o sobstvennykh znacheniyakh chetvertogo poryadka”, Vestn. Bakinskogo un-ta. Ser. fiz.-matem. nauk, 2011, no. 2, 40–49
[32] N. B. Kerimov, Z. S. Aliev, E. A. Agaev, “On the oscillation of eigenfunctions of a fourth-order spectral problem”, Dokl. Math., 85:3 (2012), 355–357 | DOI | MR | Zbl
[33] Z. S. Aliev, E. A. Agaev, “Oscillation properties of the eigenfunctions of fourth-order completely regular Sturmian systems”, Dokl. Math., 90:3 (2014), 657–659 | DOI | DOI | MR | Zbl
[34] Z. S. Aliyev, “Some global results for nonlinear fourth order eigenvalue problems”, Cent. Eur. J. Math., 12:12 (2014), 1811–1828 | DOI | MR | Zbl
[35] E. N. Dancer, “On the structure of solutions of non-linear eigenvalue problems”, Indiana Univ. Math. J., 23:11 (1974), 1069–1076 | DOI | MR | Zbl
[36] D. O. Banks, G. J. Kurowski, “A Prüfer transformation for the equation of the vibrating beam”, Trans. Amer. Math. Soc., 199 (1974), 203–222 | DOI | MR | Zbl
[37] D. O. Banks, G. J. Kurowski, “A Prüfer transformation for the equation of a vibrating beam subject to axial forces”, J. Differential Equations, 24 (1977), 57–74 | DOI | MR | Zbl
[38] N. B. Kerimov, Z. S. Aliyev, “On oscillation properties of the eigenfunctions of a fourth order differential operator”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25:4, Math. Mech. (2005), 63–76 | MR | Zbl
[39] Z. S. Aliyev, “Bifurcation from zero or infinity of some fourth order nonlinear problems with spectral parameter in the boundary condition”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 28:4, Math. Mech. (2008), 17–26 | MR | Zbl
[40] P. I. Lizorkin, Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, Nauka, M., 1981, 384 pp. | MR
[41] R. Courant, D. Hilbert, Methoden der mathematischen Physik, Grundlehren Math. Wiss., I, 2. verb. Aufl., Julius Springer, Berlin, 1931, xiv+469 pp. | MR | Zbl
[42] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, N.Y., 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | MR | Zbl | Zbl