Projective toric polynomial generators in the unitary cobordism ring
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1601-1624

Voir la notice de l'article provenant de la source Math-Net.Ru

According to Milnor and Novikov's classical result, the unitary cobordism ring is isomorphic to a graded polynomial ring with countably many generators: $\Omega^U_*\simeq \mathbb{Z}[a_1,a_2,\dots]$, $\deg(a_i)=2i$. In this paper we solve the well-known problem of constructing geometric representatives for the $a_i$ among smooth projective toric varieties, $a_n=[X^{n}]$, $\dim_\mathbb{C} X^{n}=n$. Our proof uses a family of equivariant modifications (birational isomorphisms) $B_k(X)\to X$ of an arbitrary complex manifold $X$ of complex dimension $n$ ($n\geqslant 2$, $k=0,\dots,n-2$). The key fact is that the change of the Milnor number under these modifications depends only on the dimension $n$ and the number $k$ and does not depend on the manifold $X$ itself. Bibliography: 22 titles.
Keywords: unitary cobordism, toric varieties, blow-ups, convex polytopes.
@article{SM_2016_207_11_a6,
     author = {G. D. Solomadin and Yu. M. Ustinovskiy},
     title = {Projective toric polynomial generators in the unitary cobordism ring},
     journal = {Sbornik. Mathematics},
     pages = {1601--1624},
     publisher = {mathdoc},
     volume = {207},
     number = {11},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/}
}
TY  - JOUR
AU  - G. D. Solomadin
AU  - Yu. M. Ustinovskiy
TI  - Projective toric polynomial generators in the unitary cobordism ring
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1601
EP  - 1624
VL  - 207
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/
LA  - en
ID  - SM_2016_207_11_a6
ER  - 
%0 Journal Article
%A G. D. Solomadin
%A Yu. M. Ustinovskiy
%T Projective toric polynomial generators in the unitary cobordism ring
%J Sbornik. Mathematics
%D 2016
%P 1601-1624
%V 207
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/
%G en
%F SM_2016_207_11_a6
G. D. Solomadin; Yu. M. Ustinovskiy. Projective toric polynomial generators in the unitary cobordism ring. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1601-1624. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/