Projective toric polynomial generators in the unitary cobordism ring
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1601-1624 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to Milnor and Novikov's classical result, the unitary cobordism ring is isomorphic to a graded polynomial ring with countably many generators: $\Omega^U_*\simeq \mathbb{Z}[a_1,a_2,\dots]$, $\deg(a_i)=2i$. In this paper we solve the well-known problem of constructing geometric representatives for the $a_i$ among smooth projective toric varieties, $a_n=[X^{n}]$, $\dim_\mathbb{C} X^{n}=n$. Our proof uses a family of equivariant modifications (birational isomorphisms) $B_k(X)\to X$ of an arbitrary complex manifold $X$ of complex dimension $n$ ($n\geqslant 2$, $k=0,\dots,n-2$). The key fact is that the change of the Milnor number under these modifications depends only on the dimension $n$ and the number $k$ and does not depend on the manifold $X$ itself. Bibliography: 22 titles.
Keywords: unitary cobordism, toric varieties, blow-ups, convex polytopes.
@article{SM_2016_207_11_a6,
     author = {G. D. Solomadin and Yu. M. Ustinovskiy},
     title = {Projective toric polynomial generators in the unitary cobordism ring},
     journal = {Sbornik. Mathematics},
     pages = {1601--1624},
     year = {2016},
     volume = {207},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/}
}
TY  - JOUR
AU  - G. D. Solomadin
AU  - Yu. M. Ustinovskiy
TI  - Projective toric polynomial generators in the unitary cobordism ring
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1601
EP  - 1624
VL  - 207
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/
LA  - en
ID  - SM_2016_207_11_a6
ER  - 
%0 Journal Article
%A G. D. Solomadin
%A Yu. M. Ustinovskiy
%T Projective toric polynomial generators in the unitary cobordism ring
%J Sbornik. Mathematics
%D 2016
%P 1601-1624
%V 207
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/
%G en
%F SM_2016_207_11_a6
G. D. Solomadin; Yu. M. Ustinovskiy. Projective toric polynomial generators in the unitary cobordism ring. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1601-1624. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/

[1] A. Borel, F. Hirzebruch, “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80:2 (1958), 458–538 | DOI | MR | Zbl

[2] A. Brauer, “On a problem of partitions”, Amer. J. Math., 64:1 (1942), 299–312 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, N. Ray, “Toric manifolds and complex cobordisms”, Russian Math. Surveys, 53:2 (1998), 371–373 | DOI | DOI | MR | Zbl

[4] V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Mosc. Math. J., 7:2 (2007), 219–242 | MR | Zbl

[5] V. M. Buchstaber, “Complex cobordism and formal groups”, Russian Math. Surveys, 67:5 (2012), 891–950 | DOI | DOI | MR | Zbl

[6] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[7] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[8] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[9] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[10] F. Hirzebruch, “Komplexe Mannigfaltigkeiten”, Proceedings of the international congress of mathematicians 1958, Cambridge Univ. Press, New York, 1960, 119–136 | MR | Zbl

[11] F. Hirzebruch, Topological methods in algebraic geometry, Grundlehren Math. Wiss., 131, 3rd ed., Springer Verlag, New York, 1966, x+232 pp. | MR | Zbl | Zbl

[12] F. Hirzebruch, T. Berger, R. Jung, Manifolds and modular forms, v. E 20, Friedr. Vieweg Sohn, Braunschweig, 1992, xii+211 pp. | DOI | MR | Zbl

[13] N. Hitchin, “Harmonic spinors”, Advances in Math., 14:1 (1974), 1–55 | DOI | MR | Zbl

[14] B. Johnston, “The values of the Milnor genus on smooth projective connected complex varieties”, Topology Appl., 138:1-3 (2004), 189–206 | DOI | MR | Zbl

[15] Zhi Lü, T. Panov, On toric generators in the unitary and special unitary bordism rings, arXiv: 1412.5084

[16] J. W. Milnor, “On the Stiefel–Whitney numbers of complex manifolds and of spin manifolds”, Topology, 3:3 (1965), 223–230 | DOI | MR | Zbl

[17] S. P. Novikov, “Gomotopicheskie svoistva kompleksov Toma”, Matem. sb., 57(99):4 (1962), 407–442 | MR | Zbl

[18] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1968, v+354+lvi pp. | MR | MR | Zbl | Zbl

[19] N. E. Steenrod, Cohomology operations, Lectures. Written and revised by D. B. A. Epstein, Ann. of Math. Stud., 50, Princeton Univ. Press, Princeton, NJ, 1962, vii+139 pp. | DOI | MR | MR | Zbl | Zbl

[20] S. Schreieder, “Dualization invariance and a new complex elliptic genus”, J. Reine Angew. Math., 2014:692 (2014), 77–108 | DOI | MR | Zbl

[21] A. Wilfong, “Smooth projective toric variety representatives in complex cobordism”, Algebraicheskaya topologiya, vypuklye mnogogranniki i smezhnye voprosy, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Viktora Matveevicha Bukhshtabera, Tr. MIAN, 286, MAIK, M., 2014, 347–367 | DOI | MR | Zbl

[22] A. Wilfong, “Toric polynomial generators of complex cobordism”, Algebr. Geom. Topol., 16:3 (2016), 1473–1491 ; arXiv: 1308.2010 | DOI | MR | Zbl