Projective toric polynomial generators in the unitary cobordism ring
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1601-1624
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			According to Milnor and Novikov's classical result, the unitary cobordism ring is isomorphic to a graded polynomial ring with countably many generators: $\Omega^U_*\simeq \mathbb{Z}[a_1,a_2,\dots]$, $\deg(a_i)=2i$. In this paper we solve the well-known problem of constructing geometric representatives for the $a_i$ among smooth projective toric varieties, $a_n=[X^{n}]$, $\dim_\mathbb{C} X^{n}=n$. Our proof uses a family of equivariant modifications (birational isomorphisms) $B_k(X)\to X$ of an arbitrary complex manifold $X$ of complex dimension $n$ ($n\geqslant 2$, $k=0,\dots,n-2$). The key fact is that the change of the Milnor number under these modifications depends only on the dimension $n$ and the number $k$ and does not depend on the manifold $X$ itself.
Bibliography: 22 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
unitary cobordism, toric varieties, blow-ups, convex polytopes.
                    
                    
                    
                  
                
                
                @article{SM_2016_207_11_a6,
     author = {G. D. Solomadin and Yu. M. Ustinovskiy},
     title = {Projective toric polynomial generators in the unitary cobordism ring},
     journal = {Sbornik. Mathematics},
     pages = {1601--1624},
     publisher = {mathdoc},
     volume = {207},
     number = {11},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/}
}
                      
                      
                    TY - JOUR AU - G. D. Solomadin AU - Yu. M. Ustinovskiy TI - Projective toric polynomial generators in the unitary cobordism ring JO - Sbornik. Mathematics PY - 2016 SP - 1601 EP - 1624 VL - 207 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/ LA - en ID - SM_2016_207_11_a6 ER -
G. D. Solomadin; Yu. M. Ustinovskiy. Projective toric polynomial generators in the unitary cobordism ring. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1601-1624. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a6/
