Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1582-1600 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct and study polyhedral product models for classifying spaces of right-angled Artin and Coxeter groups, general graph product groups and their commutator subgroups. By way of application, we give a criterion for the commutator subgroup of a graph product group to be free, and provide an explicit minimal set of generators for the commutator subgroup of a right-angled Coxeter group. Bibliography: 21 titles.
Keywords: right-angled Artin group, right-angled Coxeter group, graph product, commutator subgroup, polyhedral product.
@article{SM_2016_207_11_a5,
     author = {T. E. Panov and Ya. A. Veryovkin},
     title = {Polyhedral products and commutator subgroups of right-angled {Artin} and {Coxeter} groups},
     journal = {Sbornik. Mathematics},
     pages = {1582--1600},
     year = {2016},
     volume = {207},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a5/}
}
TY  - JOUR
AU  - T. E. Panov
AU  - Ya. A. Veryovkin
TI  - Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1582
EP  - 1600
VL  - 207
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a5/
LA  - en
ID  - SM_2016_207_11_a5
ER  - 
%0 Journal Article
%A T. E. Panov
%A Ya. A. Veryovkin
%T Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups
%J Sbornik. Mathematics
%D 2016
%P 1582-1600
%V 207
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a5/
%G en
%F SM_2016_207_11_a5
T. E. Panov; Ya. A. Veryovkin. Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1582-1600. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a5/

[1] M. W. Davis, The geometry and topology of Coxeter groups, London Math. Soc. Monogr. Ser., 32, Princeton Univ. Press, Princeton, NJ, 2008, xvi+584 pp. | MR | Zbl

[2] V. M. Bukhshtaber, T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russian Math. Surveys, 55:5 (2000), 825–921 | DOI | DOI | MR | Zbl

[3] A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, “The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668 | DOI | MR | Zbl

[4] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[5] T. Panov, N. Ray, R. Vogt, “Colimits, Stanley–Reisner algebras, and loop spaces”, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., 215, Birkhäuser, Basel, 2004, 261–291 | MR | Zbl

[6] Ki Hang Kim, F. W. Roush, “Homology of certain algebras defined by graphs”, J. Pure Appl. Algebra, 17:2 (1980), 179–186 | DOI | MR | Zbl

[7] A. Gaifullin, “Universal realisators for homology classes”, Geom. Topol., 17:3 (2013), 1745–1772 | DOI | MR | Zbl

[8] A. A. Gaifullin, “Malye nakrytiya nad graf-assotsiedrami i realizatsiya tsiklov”, Matem. sb., 207:11 (2016), 53–81

[9] H. Servatius, C. Droms, B. Servatius, “Surface subgroups of graph groups”, Proc. Amer. Math. Soc., 106:3 (1989), 573–578 | DOI | MR | Zbl

[10] J. Grbić, T. Panov, S. Theriault, Jie Wu, “The homotopy types of moment-angle complexes for flag complexes”, Trans. Amer. Math. Soc., 368:9 (2016), 6663–6682 | DOI | MR | Zbl

[11] M. W. Davis, “Groups generated by reflections and aspherical manifolds not covered by Euclidean space”, Ann. of Math. (2), 117:2 (1983), 293–324 | DOI | MR | Zbl

[12] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[13] Li Cai, “On products in a real moment-angle manifold”, J. Math. Soc. Japan (to appear)

[14] T. E. Panov, N. Ray, “Categorical aspects of toric topology”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[15] G. J. Porter, “The homotopy groups of wedges of suspensions”, Amer. J. Math., 88:3 (1966), 655–663 | DOI | MR | Zbl

[16] J. Grbić, S. Theriault, “Homotopy theory in toric topology”, Russian Math. Surveys, 71:2 (2016), 185–251 | DOI | DOI | MR | Zbl

[17] C. Droms, “A complex for right-angled Coxeter groups”, Proc. Amer. Math. Soc., 131:8 (2003), 2305–2311 | DOI | MR | Zbl

[18] M. Stafa, “On the fundamental group of certain polyhedral products”, J. Pure Appl. Algebra, 219:6 (2015), 2279–2299 | DOI | MR | Zbl

[19] D. R. Fulkerson, O. A. Gross, “Incidence matrices and interval graphs”, Pacific J. Math, 15:3 (1965), 835–855 | DOI | MR | Zbl

[20] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Interscience Publishers [John Wiley Sons, Inc.], New York–London–Sydney, 1966, xii+444 pp. | MR | Zbl | Zbl

[21] Ya. A. Verevkin, “Algebry Pontryagina nekotorykh moment-ugol kompleksov”, Dalnevost. matem. zhurn., 16:1 (2016), 9–23