On some problems related to the Hilbert-Smith conjecture
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1562-1581 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Hilbert-Smith conjecture claims that if a compact group $G$ acts freely on a manifold, then it is a Lie group. For a finite-dimensional orbit space a reduction of the Hilbert-Smith conjecture to certain other problems in geometric topology is presented; in these the key problem is the existence of an essential sequence of lens spaces of increasing dimension. Bibliography: 52 titles.
Keywords: free action of a group, $K$-theory, completely regular maps.
Mots-clés : lens spaces
@article{SM_2016_207_11_a4,
     author = {A. N. Dranishnikov},
     title = {On some problems related to the {Hilbert-Smith} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {1562--1581},
     year = {2016},
     volume = {207},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - On some problems related to the Hilbert-Smith conjecture
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1562
EP  - 1581
VL  - 207
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/
LA  - en
ID  - SM_2016_207_11_a4
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T On some problems related to the Hilbert-Smith conjecture
%J Sbornik. Mathematics
%D 2016
%P 1562-1581
%V 207
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/
%G en
%F SM_2016_207_11_a4
A. N. Dranishnikov. On some problems related to the Hilbert-Smith conjecture. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1562-1581. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/

[1] P. S. Alexandroff, “Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen”, Math. Ann., 106:1 (1932), 161–238 | DOI | MR | Zbl

[2] M. F. Atiyah, G. B. Segal, “Equivariant K-theory and completion”, J. Differential Geometry, 3 (1969), 1–18 | MR | Zbl

[3] T. Bartsch, “On the genus of representation spheres”, Comment. Math. Helv., 65:1 (1990), 85–95 | DOI | MR | Zbl

[4] A. Borel, Seminar on transformation groups, Ann. of Math. Stud., 46, Princeton Univ. Press, Princeton, NJ, 1960, vii+245 pp. | DOI | MR | Zbl

[5] K. Borsuk, Theory of retracts, Monografie Matematyczne, 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967, 251 pp. | MR | Zbl

[6] G. E. Bredon, F. Raymond, R. F. Williams, “$p$-adic groups of transformations”, Trans. Amer. Math. Soc., 99:3 (1961), 488–498 | DOI | MR | Zbl

[7] T. A. Chapman, Lectures on Hilbert cube manifolds, Expository lectures (Guilford College, October 11–15, 1975), CBMS Reg. Conf. Ser. Math., 28, Amer. Math. Soc., Providence, RI, 1976, x+131 pp. | MR | Zbl

[8] T. A. Chapman, S. Ferry, “Hurewicz fiber maps with ANR fibers”, Topology, 16:2 (1977), 131–143 | DOI | MR | Zbl

[9] T. A. Chapman, S. Ferry, “Approximating homotopy equivalences by homeomorphisms”, Amer. J. Math., 101:3 (1979), 583–607 | DOI | MR | Zbl

[10] A. V. Černavskiĭ, “Local contractibility of the group of homeomorphisms of a manifold”, Math. USSR-Sb., 8:3 (1969), 287–333 | DOI | MR | Zbl

[11] O. Cornea, G. Lupton, J. Oprea, D. Tanré, Lusternik–Schnirelmann category, Math. Surveys Monogr., 103, Amer. Math. Soc., Providence, RI, 2003, xviii+330 pp. | DOI | MR | Zbl

[12] A. N. Dranishnikov, “The $LS$-category of the product of lens spaces”, Algebr. Geom. Topol., 15:5 (2015), 2983–3008 | DOI | MR | Zbl

[13] A. N. Dranishnikov, S. C. Ferry, S. Weinberger, “Large Riemannian manifolds which are flexible”, Ann. of Math. (2), 157:3 (2003), 919–938 | DOI | MR | Zbl

[14] A. N. Dranishnikov, E. V. Schepin, “Cell-like maps. The problem of raising dimension”, Russian Math. Surveys, 41:6 (1986), 59–111 | DOI | MR | Zbl

[15] A. N. Dranishnikov, J. E. West, “Correction to: “Compact group actions that raise dimension to infinity””, Topology Appl., 135:1-3 (2004), 249–252 | DOI

[16] E. Dyer, M.-E. Hamstrom, “Completely regular mappings”, Fund. Math., 45 (1958), 103–118 | MR | Zbl

[17] R. D. Edwards, R. C. Kirby, “Deformation of spaces of imbeddings”, Ann. of Math. (2), 93:1 (1971), 63–88 | DOI | MR | Zbl

[18] S. Ferry, “A stable converse to the Vietoris–Smale theorem with applications to shape theory”, Trans. Amer. Math. Soc., 261:2 (1980), 369–386 | DOI | MR | Zbl

[19] S. Ferry, “Strongly regular mappings with compact ANR fibers are Hurewicz fiberings”, Pacific J. Math., 75:2 (1978), 373–382 | DOI | MR | Zbl

[20] S. Ferry, “Homotoping $\varepsilon$-maps to homeomorphisms”, Amer. J. Math., 101:3 (1979), 567–582 | DOI | MR | Zbl

[21] S. Ferry, “The homeomorphism group of a compact Hilbert cube manifold is an ANR”, Ann. of Math. (2), 106:1 (1977), 101–119 | DOI | MR | Zbl

[22] M. E. Hamstrom, “Completely regular mappings whose inverses have ${\operatorname{LC}}^{0}$ homeomorphism group: A correction”, The proceedings of the first conference on monotone mappings and open mappings (Binghamton, NY, 1970), State Univ. of New York, Binghamton, NY, 1971, 255–260 | MR | Zbl

[23] D. Hilbert, “Mathematical problems”, Bull. Amer. Math. Soc., 8:10 (1902), 437–479 | DOI | MR | Zbl

[24] T. Kambe, “The structure of $K_{\Lambda}$-rings of the lens space and their applications”, J. Math. Soc. Japan, 18:2 (1966), 135–146 | DOI | MR | Zbl

[25] T. Kawaguchi, M. Sugawara, “$K$- and $KO$-rings of the lens space $L^n(p^2)$ for odd prime $p$”, Hiroshima Math. J., 1 (1971), 273–286 | MR | Zbl

[26] Soon-kyu Kim, “Local triviality of completely regular mappings”, Duke Math. J., 38:3 (1971), 467–471 | DOI | MR | Zbl

[27] R. C. Lacher, “Cell-like mappings and their generalizations”, Bull. Amer. Math. Soc., 83:4 (1977), 495–552 | DOI | MR | Zbl

[28] M. Levin, “Resolving rational cohomological dimension via a Cantor group action”, Algebr. Geom. Topol., 15 (2015), 2427–2437 | DOI | Zbl

[29] N. Mahammed, “A propos de la $K$-théorie des espaces lenticulaires”, C. R. Acad. Sci. Paris Sér. A, 271 (1970), 639–642 | MR | Zbl

[30] I. Maleshich, “The Hilbert–Smith conjecture for Hölder actions”, Russian Math. Surveys, 52:2 (1997), 407–408 | DOI | DOI | MR | Zbl

[31] G. J. Martin, “The Hilbert–Smith conjecture for quasiconformal actions”, Electron. Res. Announc. Amer. Math. Soc., 5 (1999), 66–70 | DOI | MR | Zbl

[32] D. M. Meyer, “$\mathbb Z/p$-equivariant maps between lens spaces and spheres”, Math. Ann., 312:2 (1998), 197–214 | DOI | MR | Zbl

[33] E. Michael, “Continuous selections. III”, Ann. of Math. (2), 65:2 (1957), 375–390 | DOI | MR | Zbl

[34] D. Montgomery, L. Zippin, Topological transformation groups, Interscience Publishers, New York–London, 1955, xi+282 pp. | MR | Zbl

[35] L. Pontrjagin, Topological groups, Princeton Math. Ser., 2, Princeton Univ. Press, Princeton, 1939, ix+299 pp. | MR | Zbl

[36] F. Raymond, “Cohomological and dimension theoretical properties of orbit spaces of $p$-adic actions”, Proceedings of the conference on transformation groups (New Orleans, LA, 1967), Springer, New York, 1968, 354–365 | MR | Zbl

[37] F. Raymond, R. F. Williams, “Examples of $p$-adic transformation groups”, Ann. of Math. (2), 78 (1963), 92–106 | DOI | MR | Zbl

[38] D. Repovš, E. V. Ščepin, “A proof of the Hilbert–Smith conjecture for actions by Lipschitz maps”, Math. Ann., 308:2 (1997), 361–364 | DOI | MR | Zbl

[39] D. Repovš, P. V. Semenov, Continuous selections of multivalued mappings, Math. Appl., 455, Kluwer Acad. Publ., Dordrecht, 1998, viii+356 pp. | DOI | MR | Zbl

[40] Y. B. Rudyak, “On category weight and its applications”, Topology, 38:1 (1999), 37–55 | DOI | MR | Zbl

[41] A. S. Schwarz, “The genus of a fibered space”, Amer. Math. Soc. Transl. Ser. 2, 55, Amer. Math. Soc., Providence, RI, 1966, 49–140 | MR | Zbl

[42] S. B. Seidman, “Completely regular mappings with locally compact fiber”, Trans. Amer. Math. Soc., 147:2 (1970), 461–471 | DOI | MR | Zbl

[43] P. A. Smith, “Transformations of finite period. III. Newman's theorem”, Ann. of Math. (2), 42:2 (1941), 446–458 | DOI | MR | Zbl

[44] P. A. Smith, “Periodic and nearly periodic transformations”, Lectures in topology, Univ. of Michigan Press, Ann Arbor, MI, 1941, 159–190 | MR | Zbl

[45] T. Srinivasan, “On the Lusternik–Schnirelmann category of Peano continua”, Topology Appl., 160:13 (2013), 1742–1749 | DOI | MR | Zbl

[46] R. M. Switzer, Algebraic topology – homotopy and homology, Grundlehren Math. Wiss., 212, Springer-Verlag, New York–Heidelberg, 1975, xii+526 pp. | MR | MR | Zbl | Zbl

[47] G. S. Ungar, “Completely regular maps, fiber maps and local $n$-connectivity”, Proc. Amer. Math. Soc., 21 (1969), 104–108 | DOI | MR | Zbl

[48] J. W. Vick, “An application of $K$-theory to equivariant maps”, Bull. Amer. Math. Soc., 75 (1969), 1017–1019 | DOI | MR | Zbl

[49] J. J. Walsh, “Dimension, cohomological dimension, and cell-like mappings”, Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math., 870, Springer, Berlin–New York, 1981, 105–118 | DOI | MR | Zbl

[50] R. F. Williams, “The construction of certain 0 dimensional transformation groups”, Trans. Amer. Math. Soc., 129 (1967), 140–156 | DOI | MR | Zbl

[51] Chung-Tao Yang, “$p$-adic transformation groups”, Michigan Math. J., 7:3 (1960), 201–218 | DOI | MR | Zbl

[52] Chung-Tao Yang, “Hilbert's fifth problem and related problems on transformation groups”, Mathematical developments arising from Hilbert problems (Northern Illinois Univ., De Kalb, IL, 1974), Proc. Sympos. Pure Math., XXVIII, Part I, Amer. Math. Soc., Providence, RI, 1976, 142–146 | MR | Zbl