On some problems related to the Hilbert-Smith conjecture
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1562-1581

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hilbert-Smith conjecture claims that if a compact group $G$ acts freely on a manifold, then it is a Lie group. For a finite-dimensional orbit space a reduction of the Hilbert-Smith conjecture to certain other problems in geometric topology is presented; in these the key problem is the existence of an essential sequence of lens spaces of increasing dimension. Bibliography: 52 titles.
Keywords: free action of a group, $K$-theory, completely regular maps.
Mots-clés : lens spaces
@article{SM_2016_207_11_a4,
     author = {A. N. Dranishnikov},
     title = {On some problems related to the {Hilbert-Smith} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {1562--1581},
     publisher = {mathdoc},
     volume = {207},
     number = {11},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - On some problems related to the Hilbert-Smith conjecture
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1562
EP  - 1581
VL  - 207
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/
LA  - en
ID  - SM_2016_207_11_a4
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T On some problems related to the Hilbert-Smith conjecture
%J Sbornik. Mathematics
%D 2016
%P 1562-1581
%V 207
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/
%G en
%F SM_2016_207_11_a4
A. N. Dranishnikov. On some problems related to the Hilbert-Smith conjecture. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1562-1581. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/