On some problems related to the Hilbert-Smith conjecture
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1562-1581
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hilbert-Smith conjecture claims that if a compact group $G$ acts freely on a manifold, then it is a Lie group. For a finite-dimensional orbit space a reduction of the Hilbert-Smith conjecture to certain other problems in geometric topology is presented; in these the key problem is the existence of an essential sequence of lens spaces of increasing dimension.
Bibliography: 52 titles.
Keywords:
free action of a group, $K$-theory, completely regular maps.
Mots-clés : lens spaces
Mots-clés : lens spaces
@article{SM_2016_207_11_a4,
author = {A. N. Dranishnikov},
title = {On some problems related to the {Hilbert-Smith} conjecture},
journal = {Sbornik. Mathematics},
pages = {1562--1581},
publisher = {mathdoc},
volume = {207},
number = {11},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/}
}
A. N. Dranishnikov. On some problems related to the Hilbert-Smith conjecture. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1562-1581. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a4/