Small covers of graph-associahedra and realization of cycles
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1537-1561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An oriented connected closed manifold $M^n$ is called a $\mathrm{URC}$-manifold if for any oriented connected closed manifold $N^n$ of the same dimension there exists a nonzero-degree mapping of a finite-fold covering $\widehat{M}^n$ of $M^n$ onto $N^n$. This condition is equivalent to the following: for any $n$-dimensional integral homology class of any topological space $X$, a multiple of it can be realized as the image of the fundamental class of a finite-fold covering $\widehat{M}^n$ of $M^n$ under a continuous mapping $f\colon \widehat{M}^n\to X$. In 2007 the author gave a constructive proof of Thom's classical result that a multiple of any integral homology class can be realized as an image of the fundamental class of an oriented smooth manifold. This construction yields the existence of $\mathrm{URC}$-manifolds of all dimensions. For an important class of manifolds, the so-called small covers of graph-associahedra corresponding to connected graphs, we prove that either they or their two-fold orientation coverings are $\mathrm{URC}$-manifolds. In particular, we obtain that the two-fold covering of the small cover of the usual Stasheff associahedron is a $\mathrm{URC}$-manifold. In dimensions 4 and higher, this manifold is simpler than all the previously known $\mathrm{URC}$-manifolds. Bibliography: 39 titles.
Keywords: realization of cycles, $\mathrm{URC}$-manifold, small cover
Mots-clés : domination relation, graph-associahedron.
@article{SM_2016_207_11_a3,
     author = {A. A. Gaifullin},
     title = {Small covers of graph-associahedra and realization of cycles},
     journal = {Sbornik. Mathematics},
     pages = {1537--1561},
     year = {2016},
     volume = {207},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a3/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - Small covers of graph-associahedra and realization of cycles
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1537
EP  - 1561
VL  - 207
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a3/
LA  - en
ID  - SM_2016_207_11_a3
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T Small covers of graph-associahedra and realization of cycles
%J Sbornik. Mathematics
%D 2016
%P 1537-1561
%V 207
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a3/
%G en
%F SM_2016_207_11_a3
A. A. Gaifullin. Small covers of graph-associahedra and realization of cycles. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1537-1561. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a3/

[1] R. Thom, “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28:1 (1954), 17–86 | DOI | MR | MR | Zbl

[2] S. P. Novikov, “Homotopy properties of Thom complexes”, Topological library, Part 1: cobordisms and their applications, Series on Knots and Everything, 39, World Sci. Publ., Hackensack, NJ, 2007, 211–250 | DOI | MR | MR | Zbl | Zbl

[3] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence”, Math. USSR-Sb., 7:2 (1969), 299–313 | DOI | MR | Zbl

[4] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence. II”, Math. USSR-Sb., 12:1 (1970), 59–75 | DOI | MR | Zbl

[5] A. A. Gaifullin, “Explicit construction of manifolds realising prescribed homology classes”, Russian Math. Surveys, 62:6 (2007), 1199–1201 ; arXiv: 0712.1709 | DOI | DOI | MR | Zbl

[6] A. A. Gaifullin, “Realisation of cycles by aspherical manifolds”, Russian Math. Surveys, 63:3 (2008), 562–564 ; arXiv: 0806.3580 | DOI | DOI | MR | Zbl

[7] A. A. Gaifullin, “The manifold of isospectral symmetric tridiagonal matrices and realization of cycles by aspherical manifolds”, Proc. Steklov Inst. Math., 263 (2008), 38–56 | DOI | MR | Zbl

[8] C. Tomei, “The topology of isospectral manifolds of tridiagonal matrices”, Duke Math. J., 51:4 (1984), 981–996 | DOI | MR | Zbl

[9] A. Gaifullin, “Universal realisators for homology classes”, Geom. Topol., 17:3 (2013), 1745–1772 ; arXiv: 1201.4823 | DOI | MR | Zbl

[10] A. A. Gaifullin, “Combinatorial realisation of cycles and small covers”, European congress of mathematics, Kraków, 2–7 July, 2012, Eur. Math. Soc., Zürich, 2013, 315–330 ; arXiv: 1204.0208 | DOI | MR | Zbl

[11] J. W. Milnor, W. Thurston, “Characteristic numbers of 3-manifolds”, Enseignement Math. (2), 23:3-4 (1977), 249–254 | MR | Zbl

[12] M. Gromov, “Volume and bounded cohomology”, Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5–99 | MR | Zbl

[13] J. A. Carlson, D. Toledo, “Harmonic mappings of Kähler manifolds to locally symmetric spaces”, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 173–201 | DOI | MR | Zbl

[14] D. Kotschick, C. Löh, “Fundamental classes not representable by products”, J. Lond. Math. Soc. (2), 79:3 (2009), 545–561 ; arXiv: 0806.4540 | DOI | MR | Zbl

[15] M. Carr, S. L. Devadoss, “Coxeter complexes and graph-associahedra”, Topology Appl., 153:12 (2006), 2155–2168 ; arXiv: math/0407229 | DOI | MR | Zbl

[16] A. A. Gaifullin, “The construction of combinatorial manifolds with prescribed sets of links of vertices”, Izv. Math., 72:5 (2008), 845–899 ; arXiv: 0801.4741 | DOI | DOI | MR | Zbl

[17] V. M. Buchstaber, V. D. Volodin, “Sharp upper and lower bounds for nestohedra”, Izv. Math., 75:6 (2011), 1107–1133 ; Upper and lower bound theorems for graph-associahedra, arXiv: 1005.1631 | DOI | DOI | MR | Zbl

[18] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[19] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. ; arXiv: 1210.2368 | DOI | MR | Zbl

[20] M. W. Davis, “Groups generated by reflections and aspherical manifolds not covered by Euclidean space”, Ann. of Math. (2), 117:2 (1983), 293–324 | DOI | MR | Zbl

[21] W. Thurston, The geometry and topology of three-manifolds, Princeton lecture notes, unpublished, 1980, vii+360 pp.; electronic version, 2002 http://msri.org/publications/books/gt3m/

[22] T. E. Panov, Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016)

[23] C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494 | DOI | MR | Zbl

[24] V. Toledano Laredo, “Quasi-Coxeter algebras, Dynkin diagram cohomology, and quantum Weyl groups”, Int. Math. Res. Pap. IMRP, 2008 (2008), rpn009, 167 pp. ; arXiv: math/0506529 | DOI | MR | Zbl

[25] E. M. Feichtner, B. Sturmfels, “Matroid polytopes, nested sets and Bergman fans”, Port. Math. (N.S.), 62:4 (2005), 437–468 ; arXiv: math/0411260 | MR | Zbl

[26] A. Postnikov, “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not. IMRN, 2009:6 (2009), 1026–1106 ; arXiv: math/0507163 | DOI | MR | Zbl

[27] A. Postnikov, V. Reiner, L. Williams, “Faces of generalized permutohedra”, Doc. Math., 13 (2008), 207–273 ; arXiv: math/0609184 | MR | Zbl

[28] V. M. Bukhshtaber, T. E. Panov, “Combinatorics of simplicial cell complexes and torus actions”, Proc. Steklov Inst. Math., 247 (2004), 33–49 | MR | Zbl

[29] J.-P. Serre, “Groupes d'homotopie et classes de groupes abéliens”, Ann. of Math. (2), 58:2 (1953), 258–294 | DOI | MR | MR | Zbl

[30] V. M. Buhštaber, “The Chern–Dold character in cobordisms. I”, Math. USSR-Sb., 12:4 (1970), 573–594 | DOI | MR | Zbl

[31] Hongbin Sun, “Virtual domination of $3$-manifolds”, Geom. Topol., 19:4 (2015), 2277–2328 ; arXiv: 1401.7049 | DOI | MR | Zbl

[32] B. Eckmann, “Coverings and Betti numbers”, Bull. Amer. Math. Soc., 55:2 (1949), 95–101 | DOI | MR | Zbl

[33] R. G. Brasher, “The homology sequence of the double covering; Betti numbers and duality”, Proc. Amer. Math. Soc., 23:3 (1969), 714–717 | DOI | MR | Zbl

[34] Suyoung Choi, Hanchul Park, “A new graph invariant arises in toric topology”, J. Math. Soc. Japan, 67:2 (2015), 699–720 ; arXiv: 1210.3776 | DOI | MR | Zbl

[35] D. Fried, “The cohomology of an isospectral flow”, Proc. Amer. Math. Soc., 98:2 (1986), 363–368 | DOI | MR | Zbl

[36] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263 (2008), 13–37 | DOI | MR | Zbl

[37] A. Henderson, “Rational cohomology of the real Coxeter toric variety of type A”, Configuration spaces, CRM Series, 14, Ed. Norm., Pisa, 2012, 313–326 ; arXiv: 1011.3860 | DOI | MR | Zbl

[38] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[39] D. Gabai, R. Meyerhoff, P. Milley, “Minimum volume cusped hyperbolic three-manifolds”, J. Amer. Math. Soc., 22:4 (2009), 1157–1215 ; arXiv: 0705.4325 | DOI | MR | Zbl