Mots-clés : domination relation, graph-associahedron.
@article{SM_2016_207_11_a3,
author = {A. A. Gaifullin},
title = {Small covers of graph-associahedra and realization of cycles},
journal = {Sbornik. Mathematics},
pages = {1537--1561},
year = {2016},
volume = {207},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a3/}
}
A. A. Gaifullin. Small covers of graph-associahedra and realization of cycles. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1537-1561. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a3/
[1] R. Thom, “Quelques propriétés globales des variétés différentiables”, Comment. Math. Helv., 28:1 (1954), 17–86 | DOI | MR | MR | Zbl
[2] S. P. Novikov, “Homotopy properties of Thom complexes”, Topological library, Part 1: cobordisms and their applications, Series on Knots and Everything, 39, World Sci. Publ., Hackensack, NJ, 2007, 211–250 | DOI | MR | MR | Zbl | Zbl
[3] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence”, Math. USSR-Sb., 7:2 (1969), 299–313 | DOI | MR | Zbl
[4] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence. II”, Math. USSR-Sb., 12:1 (1970), 59–75 | DOI | MR | Zbl
[5] A. A. Gaifullin, “Explicit construction of manifolds realising prescribed homology classes”, Russian Math. Surveys, 62:6 (2007), 1199–1201 ; arXiv: 0712.1709 | DOI | DOI | MR | Zbl
[6] A. A. Gaifullin, “Realisation of cycles by aspherical manifolds”, Russian Math. Surveys, 63:3 (2008), 562–564 ; arXiv: 0806.3580 | DOI | DOI | MR | Zbl
[7] A. A. Gaifullin, “The manifold of isospectral symmetric tridiagonal matrices and realization of cycles by aspherical manifolds”, Proc. Steklov Inst. Math., 263 (2008), 38–56 | DOI | MR | Zbl
[8] C. Tomei, “The topology of isospectral manifolds of tridiagonal matrices”, Duke Math. J., 51:4 (1984), 981–996 | DOI | MR | Zbl
[9] A. Gaifullin, “Universal realisators for homology classes”, Geom. Topol., 17:3 (2013), 1745–1772 ; arXiv: 1201.4823 | DOI | MR | Zbl
[10] A. A. Gaifullin, “Combinatorial realisation of cycles and small covers”, European congress of mathematics, Kraków, 2–7 July, 2012, Eur. Math. Soc., Zürich, 2013, 315–330 ; arXiv: 1204.0208 | DOI | MR | Zbl
[11] J. W. Milnor, W. Thurston, “Characteristic numbers of 3-manifolds”, Enseignement Math. (2), 23:3-4 (1977), 249–254 | MR | Zbl
[12] M. Gromov, “Volume and bounded cohomology”, Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5–99 | MR | Zbl
[13] J. A. Carlson, D. Toledo, “Harmonic mappings of Kähler manifolds to locally symmetric spaces”, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 173–201 | DOI | MR | Zbl
[14] D. Kotschick, C. Löh, “Fundamental classes not representable by products”, J. Lond. Math. Soc. (2), 79:3 (2009), 545–561 ; arXiv: 0806.4540 | DOI | MR | Zbl
[15] M. Carr, S. L. Devadoss, “Coxeter complexes and graph-associahedra”, Topology Appl., 153:12 (2006), 2155–2168 ; arXiv: math/0407229 | DOI | MR | Zbl
[16] A. A. Gaifullin, “The construction of combinatorial manifolds with prescribed sets of links of vertices”, Izv. Math., 72:5 (2008), 845–899 ; arXiv: 0801.4741 | DOI | DOI | MR | Zbl
[17] V. M. Buchstaber, V. D. Volodin, “Sharp upper and lower bounds for nestohedra”, Izv. Math., 75:6 (2011), 1107–1133 ; Upper and lower bound theorems for graph-associahedra, arXiv: 1005.1631 | DOI | DOI | MR | Zbl
[18] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[19] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. ; arXiv: 1210.2368 | DOI | MR | Zbl
[20] M. W. Davis, “Groups generated by reflections and aspherical manifolds not covered by Euclidean space”, Ann. of Math. (2), 117:2 (1983), 293–324 | DOI | MR | Zbl
[21] W. Thurston, The geometry and topology of three-manifolds, Princeton lecture notes, unpublished, 1980, vii+360 pp.; electronic version, 2002 http://msri.org/publications/books/gt3m/
[22] T. E. Panov, Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016)
[23] C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494 | DOI | MR | Zbl
[24] V. Toledano Laredo, “Quasi-Coxeter algebras, Dynkin diagram cohomology, and quantum Weyl groups”, Int. Math. Res. Pap. IMRP, 2008 (2008), rpn009, 167 pp. ; arXiv: math/0506529 | DOI | MR | Zbl
[25] E. M. Feichtner, B. Sturmfels, “Matroid polytopes, nested sets and Bergman fans”, Port. Math. (N.S.), 62:4 (2005), 437–468 ; arXiv: math/0411260 | MR | Zbl
[26] A. Postnikov, “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not. IMRN, 2009:6 (2009), 1026–1106 ; arXiv: math/0507163 | DOI | MR | Zbl
[27] A. Postnikov, V. Reiner, L. Williams, “Faces of generalized permutohedra”, Doc. Math., 13 (2008), 207–273 ; arXiv: math/0609184 | MR | Zbl
[28] V. M. Bukhshtaber, T. E. Panov, “Combinatorics of simplicial cell complexes and torus actions”, Proc. Steklov Inst. Math., 247 (2004), 33–49 | MR | Zbl
[29] J.-P. Serre, “Groupes d'homotopie et classes de groupes abéliens”, Ann. of Math. (2), 58:2 (1953), 258–294 | DOI | MR | MR | Zbl
[30] V. M. Buhštaber, “The Chern–Dold character in cobordisms. I”, Math. USSR-Sb., 12:4 (1970), 573–594 | DOI | MR | Zbl
[31] Hongbin Sun, “Virtual domination of $3$-manifolds”, Geom. Topol., 19:4 (2015), 2277–2328 ; arXiv: 1401.7049 | DOI | MR | Zbl
[32] B. Eckmann, “Coverings and Betti numbers”, Bull. Amer. Math. Soc., 55:2 (1949), 95–101 | DOI | MR | Zbl
[33] R. G. Brasher, “The homology sequence of the double covering; Betti numbers and duality”, Proc. Amer. Math. Soc., 23:3 (1969), 714–717 | DOI | MR | Zbl
[34] Suyoung Choi, Hanchul Park, “A new graph invariant arises in toric topology”, J. Math. Soc. Japan, 67:2 (2015), 699–720 ; arXiv: 1210.3776 | DOI | MR | Zbl
[35] D. Fried, “The cohomology of an isospectral flow”, Proc. Amer. Math. Soc., 98:2 (1986), 363–368 | DOI | MR | Zbl
[36] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263 (2008), 13–37 | DOI | MR | Zbl
[37] A. Henderson, “Rational cohomology of the real Coxeter toric variety of type A”, Configuration spaces, CRM Series, 14, Ed. Norm., Pisa, 2012, 313–326 ; arXiv: 1011.3860 | DOI | MR | Zbl
[38] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl
[39] D. Gabai, R. Meyerhoff, P. Milley, “Minimum volume cusped hyperbolic three-manifolds”, J. Amer. Math. Soc., 22:4 (2009), 1157–1215 ; arXiv: 0705.4325 | DOI | MR | Zbl