On volumes of classical supermanifolds
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1512-1536

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the volumes of classical supermanifolds (such as the supersphere, complex projective superspace, Stiefel and Grassmann supermanifolds) with respect to natural metrics or symplectic structures. We show that the formulae for the volumes of these supermanifolds can be obtained from the formulae for the volumes of the corresponding ordinary manifolds (under some universal normalization of the volume) by analytic continuation with respect to parameters. The volumes of nontrivial supermanifolds may be identically equal to zero. In the 1970s Berezin showed that the total Haar measure of the unitary supergroup $\mathbf{U}(n|m)$ vanishes except in the cases $m=0$ and $n=0$, when the supergroup is the ordinary unitary group $\mathbf{U}(n)$ or $\mathbf{U}(m)$. Some time ago Witten conjectured that the Liouville volume of a compact even symplectic supermanifold is always equal to zero (except for ordinary manifolds). We give counterexamples to this conjecture, present a simple explanation of Berezin's theorem, and generalize this theorem to the Stiefel supermanifold $\mathbf{V}_{r|s}(\mathbf C^{n|m})$. We mention a connection with recent work of Mkrtchyan and Veselov on universal formulae in Lie algebra theory. Bibliography: 32 titles.
Keywords: supermanifolds, symplectic structure, Riemannian metric, Riemannian submersion, Berezin integral.
Mots-clés : volume
@article{SM_2016_207_11_a2,
     author = {Th. Th. Voronov},
     title = {On volumes of classical supermanifolds},
     journal = {Sbornik. Mathematics},
     pages = {1512--1536},
     publisher = {mathdoc},
     volume = {207},
     number = {11},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/}
}
TY  - JOUR
AU  - Th. Th. Voronov
TI  - On volumes of classical supermanifolds
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1512
EP  - 1536
VL  - 207
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/
LA  - en
ID  - SM_2016_207_11_a2
ER  - 
%0 Journal Article
%A Th. Th. Voronov
%T On volumes of classical supermanifolds
%J Sbornik. Mathematics
%D 2016
%P 1512-1536
%V 207
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/
%G en
%F SM_2016_207_11_a2
Th. Th. Voronov. On volumes of classical supermanifolds. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1512-1536. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/