On volumes of classical supermanifolds
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1512-1536 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the volumes of classical supermanifolds (such as the supersphere, complex projective superspace, Stiefel and Grassmann supermanifolds) with respect to natural metrics or symplectic structures. We show that the formulae for the volumes of these supermanifolds can be obtained from the formulae for the volumes of the corresponding ordinary manifolds (under some universal normalization of the volume) by analytic continuation with respect to parameters. The volumes of nontrivial supermanifolds may be identically equal to zero. In the 1970s Berezin showed that the total Haar measure of the unitary supergroup $\mathbf{U}(n|m)$ vanishes except in the cases $m=0$ and $n=0$, when the supergroup is the ordinary unitary group $\mathbf{U}(n)$ or $\mathbf{U}(m)$. Some time ago Witten conjectured that the Liouville volume of a compact even symplectic supermanifold is always equal to zero (except for ordinary manifolds). We give counterexamples to this conjecture, present a simple explanation of Berezin's theorem, and generalize this theorem to the Stiefel supermanifold $\mathbf{V}_{r|s}(\mathbf C^{n|m})$. We mention a connection with recent work of Mkrtchyan and Veselov on universal formulae in Lie algebra theory. Bibliography: 32 titles.
Keywords: supermanifolds, symplectic structure, Riemannian metric, Riemannian submersion, Berezin integral.
Mots-clés : volume
@article{SM_2016_207_11_a2,
     author = {Th. Th. Voronov},
     title = {On volumes of classical supermanifolds},
     journal = {Sbornik. Mathematics},
     pages = {1512--1536},
     year = {2016},
     volume = {207},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/}
}
TY  - JOUR
AU  - Th. Th. Voronov
TI  - On volumes of classical supermanifolds
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1512
EP  - 1536
VL  - 207
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/
LA  - en
ID  - SM_2016_207_11_a2
ER  - 
%0 Journal Article
%A Th. Th. Voronov
%T On volumes of classical supermanifolds
%J Sbornik. Mathematics
%D 2016
%P 1512-1536
%V 207
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/
%G en
%F SM_2016_207_11_a2
Th. Th. Voronov. On volumes of classical supermanifolds. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1512-1536. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/

[1] F. A. Berezin, “Representations of the supergroup $U(p,q)$”, Funct. Anal. Appl., 10:3 (1976), 221–223 | DOI | MR | Zbl

[2] F. A. Berezin, Construction of representations of Lie supergroups $U(p,q)$ and $C(m,n)$, preprint ITEP-76, 1977, 47 pp.

[3] F. A. Berezin, Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Co., Dordrecht, 1987, xii+424 pp. | DOI | MR | Zbl

[4] Th. Voronov, Geometric integration theory on supermanifolds, Class. Rev. Math. Math. Phys., 3, Cambridge Sci. Publ., Cambridge, 2014, 138 pp. | MR | Zbl

[5] C. I. Lazaroiu, D. McNamee, Ch. Sämann, “Generalized Berezin–Toeplitz quantization of Kähler supermanifolds”, J. High Energy Phys., 5 (2009), 055, 43 pp. | DOI | MR

[6] R. L. Mkrtchyan, A. P. Veselov, “On duality and negative dimensions in the theory of Lie groups and symmetric spaces”, J. Math. Phys., 52:8 (2011), 083514, 10 pp. | DOI | MR | Zbl

[7] R. L. Mkrtchyan, “Nonperturbative universal Chern–Simons theory”, J. High Energy Phys., 9 (2013), 054, 18 pp. | DOI | MR | Zbl

[8] R. L. Mkrtchyan, A. P. Veselov, A universal formula for the volume of compact Lie groups, arXiv: 1304.3031

[9] R. L. Mkrtchyan, “Universal Chern–Simons partition functions as quadruple {B}arnes' gamma-functions”, J. High Energy Phys., 10 (2013), 190, 15 pp. | DOI | MR | Zbl

[10] R. L. Mkrtchyan, “The equivalence of $Sp(2N)$ and $SO(-2N)$ gauge theories”, Phys. Lett. B, 105:2-3 (1981), 174–176 | DOI

[11] P. Vogel, “Algebraic structures on modules of diagrams”, preprint (1995), J. Pure Appl. Algebra, 215:6 (2011), 1292–1339 | DOI | MR | Zbl

[12] H. M. Khudaverdian, R. L. Mkrtchyan, Universal volume of groups and anomaly of Vogel's symmetry, arXiv: 1602.00337

[13] L. J. Boya, E. C. G. Sudarshan, T. Tilma, “Volumes of compact manifolds”, Rep. Math. Phys., 52:3 (2003), 401–422 | DOI | MR | Zbl

[14] A. Haunch, Rational functions with Grassmann coefficients and hypersurfaces in superspace, Ph.D. thesis, Univ. of Manchester, 2007, 96 pp.

[15] Th. Th. Voronov, H. M. Khudaverdian, “Generalized symmetric powers and a generalization of the Kolmogorov–Gel'fand–Buchstaber–Rees theory”, Russian Math. Surveys, 62:3 (2007), 623–625 | DOI | DOI | MR | Zbl

[16] H. M. Khudaverdian, Th. Th. Voronov, “A short proof of the Buchstaber–Rees theorem”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369:1939 (2011), 1334–1345 | DOI | MR | Zbl

[17] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983, 208 pp. | MR | Zbl

[18] V. S. Adamchik, “Contributions to the theory of the Barnes function”, Int. J. Math. Comput. Sci., 9:1 (2014), 11–30 | MR

[19] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monogr., 6, Amer. Math. Soc., Providence, RI, 1963, iv+164 pp. | MR | MR | Zbl | Zbl

[20] M. S. Marinov, “Invariant volumes of compact groups”, J. Phys. A, 13:11 (1980), 3357–3366 | DOI | MR | Zbl

[21] M. S. Marinov, “Correction to ‘Invariant volumes of compact groups’”, J. Phys. A, 14:2 (1981), 543–544 | DOI | Zbl

[22] H. D. Fegan, “The heat equation and modular forms”, J. Differential Geom., 13:4 (1978), 589–602 | MR | Zbl

[23] I. G. Macdonald, “The volume of a compact Lie group”, Invent. Math., 56:2 (1980), 93–95 | DOI | MR | Zbl

[24] Y. Hashimoto, “On Macdonald's formula for the volume of a compact Lie group”, Comment. Math. Helv., 72:4 (1997), 660–662 | DOI | MR | Zbl

[25] V. G. Kac, D. H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. in Math., 53:2 (1984), 125–264 | DOI | MR | Zbl

[26] M. F. Atiyah, “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15 | DOI | MR | Zbl

[27] V. Guillemin, S. Sternberg, “Convexity properties of the moment mapping”, Invent. Math., 67:3 (1982), 491–513 | DOI | MR | Zbl

[28] D. A. Leites, Teoriya supermnogoobrazii, Karelskii filial AN SSSR, Petrozavodsk, 1983, 199 pp.

[29] Yu. I. Manin, Gauge field theory and complex geometry, Grundlehren Math. Wiss., 289, Springer-Verlag, Berlin, 1988, x+296 pp. | DOI | MR | MR | Zbl | Zbl

[30] P. Deligne, J. W. Morgan, “Notes on supersymmetry (following Joseph Bernstein)”, Quantum fields and strings: a course for mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 41–97 | MR | Zbl

[31] A. Rogers, Supermanifolds. Theory and applications, World Sci. Publ., Hackensack, NJ, 2007, xii+251 pp. | DOI | MR | Zbl

[32] H. M. Khudaverdian, Th. Voronov, “On odd Laplace operators”, Lett. Math. Phys., 62:2 (2002), 127–142 | DOI | MR | Zbl