Mots-clés : volume
@article{SM_2016_207_11_a2,
author = {Th. Th. Voronov},
title = {On volumes of classical supermanifolds},
journal = {Sbornik. Mathematics},
pages = {1512--1536},
year = {2016},
volume = {207},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/}
}
Th. Th. Voronov. On volumes of classical supermanifolds. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1512-1536. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a2/
[1] F. A. Berezin, “Representations of the supergroup $U(p,q)$”, Funct. Anal. Appl., 10:3 (1976), 221–223 | DOI | MR | Zbl
[2] F. A. Berezin, Construction of representations of Lie supergroups $U(p,q)$ and $C(m,n)$, preprint ITEP-76, 1977, 47 pp.
[3] F. A. Berezin, Introduction to superanalysis, Mathematical Physics and Applied Mathematics, 9, D. Reidel Publishing Co., Dordrecht, 1987, xii+424 pp. | DOI | MR | Zbl
[4] Th. Voronov, Geometric integration theory on supermanifolds, Class. Rev. Math. Math. Phys., 3, Cambridge Sci. Publ., Cambridge, 2014, 138 pp. | MR | Zbl
[5] C. I. Lazaroiu, D. McNamee, Ch. Sämann, “Generalized Berezin–Toeplitz quantization of Kähler supermanifolds”, J. High Energy Phys., 5 (2009), 055, 43 pp. | DOI | MR
[6] R. L. Mkrtchyan, A. P. Veselov, “On duality and negative dimensions in the theory of Lie groups and symmetric spaces”, J. Math. Phys., 52:8 (2011), 083514, 10 pp. | DOI | MR | Zbl
[7] R. L. Mkrtchyan, “Nonperturbative universal Chern–Simons theory”, J. High Energy Phys., 9 (2013), 054, 18 pp. | DOI | MR | Zbl
[8] R. L. Mkrtchyan, A. P. Veselov, A universal formula for the volume of compact Lie groups, arXiv: 1304.3031
[9] R. L. Mkrtchyan, “Universal Chern–Simons partition functions as quadruple {B}arnes' gamma-functions”, J. High Energy Phys., 10 (2013), 190, 15 pp. | DOI | MR | Zbl
[10] R. L. Mkrtchyan, “The equivalence of $Sp(2N)$ and $SO(-2N)$ gauge theories”, Phys. Lett. B, 105:2-3 (1981), 174–176 | DOI
[11] P. Vogel, “Algebraic structures on modules of diagrams”, preprint (1995), J. Pure Appl. Algebra, 215:6 (2011), 1292–1339 | DOI | MR | Zbl
[12] H. M. Khudaverdian, R. L. Mkrtchyan, Universal volume of groups and anomaly of Vogel's symmetry, arXiv: 1602.00337
[13] L. J. Boya, E. C. G. Sudarshan, T. Tilma, “Volumes of compact manifolds”, Rep. Math. Phys., 52:3 (2003), 401–422 | DOI | MR | Zbl
[14] A. Haunch, Rational functions with Grassmann coefficients and hypersurfaces in superspace, Ph.D. thesis, Univ. of Manchester, 2007, 96 pp.
[15] Th. Th. Voronov, H. M. Khudaverdian, “Generalized symmetric powers and a generalization of the Kolmogorov–Gel'fand–Buchstaber–Rees theory”, Russian Math. Surveys, 62:3 (2007), 623–625 | DOI | DOI | MR | Zbl
[16] H. M. Khudaverdian, Th. Th. Voronov, “A short proof of the Buchstaber–Rees theorem”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369:1939 (2011), 1334–1345 | DOI | MR | Zbl
[17] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983, 208 pp. | MR | Zbl
[18] V. S. Adamchik, “Contributions to the theory of the Barnes function”, Int. J. Math. Comput. Sci., 9:1 (2014), 11–30 | MR
[19] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monogr., 6, Amer. Math. Soc., Providence, RI, 1963, iv+164 pp. | MR | MR | Zbl | Zbl
[20] M. S. Marinov, “Invariant volumes of compact groups”, J. Phys. A, 13:11 (1980), 3357–3366 | DOI | MR | Zbl
[21] M. S. Marinov, “Correction to ‘Invariant volumes of compact groups’”, J. Phys. A, 14:2 (1981), 543–544 | DOI | Zbl
[22] H. D. Fegan, “The heat equation and modular forms”, J. Differential Geom., 13:4 (1978), 589–602 | MR | Zbl
[23] I. G. Macdonald, “The volume of a compact Lie group”, Invent. Math., 56:2 (1980), 93–95 | DOI | MR | Zbl
[24] Y. Hashimoto, “On Macdonald's formula for the volume of a compact Lie group”, Comment. Math. Helv., 72:4 (1997), 660–662 | DOI | MR | Zbl
[25] V. G. Kac, D. H. Peterson, “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. in Math., 53:2 (1984), 125–264 | DOI | MR | Zbl
[26] M. F. Atiyah, “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14:1 (1982), 1–15 | DOI | MR | Zbl
[27] V. Guillemin, S. Sternberg, “Convexity properties of the moment mapping”, Invent. Math., 67:3 (1982), 491–513 | DOI | MR | Zbl
[28] D. A. Leites, Teoriya supermnogoobrazii, Karelskii filial AN SSSR, Petrozavodsk, 1983, 199 pp.
[29] Yu. I. Manin, Gauge field theory and complex geometry, Grundlehren Math. Wiss., 289, Springer-Verlag, Berlin, 1988, x+296 pp. | DOI | MR | MR | Zbl | Zbl
[30] P. Deligne, J. W. Morgan, “Notes on supersymmetry (following Joseph Bernstein)”, Quantum fields and strings: a course for mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 41–97 | MR | Zbl
[31] A. Rogers, Supermanifolds. Theory and applications, World Sci. Publ., Hackensack, NJ, 2007, xii+251 pp. | DOI | MR | Zbl
[32] H. M. Khudaverdian, Th. Voronov, “On odd Laplace operators”, Lett. Math. Phys., 62:2 (2002), 127–142 | DOI | MR | Zbl