Complexity of virtual 3-manifolds
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1493-1511

Voir la notice de l'article provenant de la source Math-Net.Ru

Virtual $3$-manifolds were introduced by Matveev in 2009 as natural generalizations of classical $3$-manifolds. In this paper, we introduce a notion of complexity for a virtual $3$-manifold. We investigate the values of the complexity for virtual 3-manifolds presented by special polyhedra with one or two $2$-components. On the basis of these results, we establish the exact values of the complexity for a wide class of hyperbolic $3$-manifolds with totally geodesic boundary. Bibliography: 24 titles.
Keywords: virtual manifolds, $3$-manifolds, hyperbolic manifolds, complexity.
@article{SM_2016_207_11_a1,
     author = {A. Yu. Vesnin and V. G. Turaev and E. A. Fominykh},
     title = {Complexity of virtual 3-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1493--1511},
     publisher = {mathdoc},
     volume = {207},
     number = {11},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - V. G. Turaev
AU  - E. A. Fominykh
TI  - Complexity of virtual 3-manifolds
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1493
EP  - 1511
VL  - 207
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/
LA  - en
ID  - SM_2016_207_11_a1
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A V. G. Turaev
%A E. A. Fominykh
%T Complexity of virtual 3-manifolds
%J Sbornik. Mathematics
%D 2016
%P 1493-1511
%V 207
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/
%G en
%F SM_2016_207_11_a1
A. Yu. Vesnin; V. G. Turaev; E. A. Fominykh. Complexity of virtual 3-manifolds. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1493-1511. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/