Complexity of virtual 3-manifolds
Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1493-1511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Virtual $3$-manifolds were introduced by Matveev in 2009 as natural generalizations of classical $3$-manifolds. In this paper, we introduce a notion of complexity for a virtual $3$-manifold. We investigate the values of the complexity for virtual 3-manifolds presented by special polyhedra with one or two $2$-components. On the basis of these results, we establish the exact values of the complexity for a wide class of hyperbolic $3$-manifolds with totally geodesic boundary. Bibliography: 24 titles.
Keywords: virtual manifolds, $3$-manifolds, hyperbolic manifolds, complexity.
@article{SM_2016_207_11_a1,
     author = {A. Yu. Vesnin and V. G. Turaev and E. A. Fominykh},
     title = {Complexity of virtual 3-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1493--1511},
     year = {2016},
     volume = {207},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - V. G. Turaev
AU  - E. A. Fominykh
TI  - Complexity of virtual 3-manifolds
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1493
EP  - 1511
VL  - 207
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/
LA  - en
ID  - SM_2016_207_11_a1
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A V. G. Turaev
%A E. A. Fominykh
%T Complexity of virtual 3-manifolds
%J Sbornik. Mathematics
%D 2016
%P 1493-1511
%V 207
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/
%G en
%F SM_2016_207_11_a1
A. Yu. Vesnin; V. G. Turaev; E. A. Fominykh. Complexity of virtual 3-manifolds. Sbornik. Mathematics, Tome 207 (2016) no. 11, pp. 1493-1511. http://geodesic.mathdoc.fr/item/SM_2016_207_11_a1/

[1] S. V. Matveev, “Virtual 3-manifolds”, Sib. elektron. matem. izv., 6 (2009), 518–521 | MR | Zbl

[2] V. G. Turaev, O. Y. Viro, “State sum invariants of 3-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 | DOI | MR | Zbl

[3] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, 2nd ed., Springer, Berlin, 2007, xiv+492 pp. | DOI | MR | Zbl

[4] S. V. Matveev, “Tabulation of three-dimensional manifolds”, Russian Math. Surveys, 60:4 (2005), 673–698 | DOI | DOI | MR | Zbl

[5] R. Frigerio, B. Martelli, C. Petronio, “Small hyperbolic 3-manifolds with geodesic boundary”, Experiment. Math., 13:2 (2004), 171–184 | DOI | MR | Zbl

[6] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl

[7] A. Yu. Vesnin, E. A. Fominykh, “Exact values of complexity for Paoluzzi–Zimmermann manifolds”, Dokl. Math., 84:1 (2011), 542–544 | DOI | MR | Zbl

[8] A. Yu. Vesnin, E. A. Fominykh, “On complexity of three-dimensional hyperbolic manifolds with geodesic boundary”, Siberian Math. J., 53:4 (2012), 625–634 | DOI | MR | Zbl

[9] A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Three-dimensional manifolds with poor spines”, Proc. Steklov Inst. Math., 288 (2015), 29–38 | DOI | DOI | MR | Zbl

[10] W. Jaco, H. Rubinstein, S. Tillmann, “Minimal triangulations for an infinite family of lens spaces”, J. Topol., 2:1 (2009), 157–180 | DOI | MR | Zbl

[11] W. Jaco, J. H. Rubinstein, S. Tillmann, “Coverings and minimal triangulations of 3-manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl

[12] A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “On the complexity of three-dimensional cusped hyperbolic manifolds”, Dokl. Math., 89:3 (2014), 267–270 | DOI | DOI | MR | Zbl

[13] A. Yu. Vesnin, V. V. Tarkaev, E. A. Fominykh, “Cusped hyperbolic 3-manifolds of complexity 10 having maximum volume”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 227–239 | DOI | MR | Zbl

[14] E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, A. Vesnin, “A census of tetrahedral hyperbolic manifolds”, Experiment. Math., 25:4 (2016), 466–481 | Zbl

[15] S. Matveev, C. Petronio, A. Vesnin, “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl

[16] C. Petronio, A. Vesnin, “Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links”, Osaka J. Math., 46:4 (2009), 1077–1095 | MR | Zbl

[17] A. Cattabriga, M. Mulazzani, A. Vesnin, “Complexity, Heegaard diagrams and generalized Dunwoody manifolds”, J. Korean Math. Soc, 47:3 (2010), 585–599 | DOI | MR | Zbl

[18] E. A. Fominykh, “Dehn surgeries on the figure eight knot: an upper bound for complexity”, Siberian Math. J., 52:3 (2011), 537–543 | DOI | MR | Zbl

[19] E. Fominykh, B. Wiest, “Upper bounds for the complexity of torus knot complements”, J. Knot Theory Ramifications, 22:10 (2013), 1350053, 19 pp. | DOI | MR | Zbl

[20] A. Yu. Vesnin, E. A. Fominykh, “Two-sided bounds for the complexity of hyperbolic three-manifolds with geodesic boundary”, Proc. Steklov Inst. Math., 286 (2014), 55–64 | DOI | DOI | MR | Zbl

[21] B. G. Casler, “An imbedding theorem for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16:4 (1965), 559–566 | DOI | MR | Zbl

[22] S. V. Matveev, D. O. Nikolaev, “The structure of 3-manifolds of complexity zero”, Dokl. Math., 89:2 (2014), 143–145 | DOI | DOI | MR | Zbl

[23] L. Paoluzzi, B. Zimmermann, “On a class of hyperbolic 3-manifolds and groups with one defining relation”, Geom. Dedicata, 60:2 (1996), 113–123 | DOI | MR | Zbl

[24] R. Benedetti, C. Petronio, “A finite graphic calculus for 3-manifolds”, Manuscripta Math., 88 (1995), 291–310 | DOI | MR | Zbl