Derivatives at the boundary for analytic Lipschitz functions
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1471-1490

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the behaviour of holomorphic functions on a bounded open subset of the plane, satisfying a Lipschitz condition with exponent $\alpha$, with $0\alpha1$, in the vicinity of an exceptional boundary point where all such functions exhibit some kind of smoothness. Specifically, we consider the relation between the abstract idea of a bounded point derivation on the algebra of such functions and the classical complex derivative evaluated as a limit of difference quotients. We show that whenever such a bounded point derivation exists at a boundary point $b$, it may be evaluated by taking a limit of classical difference quotients, approaching from a set having full area density at $b$. Bibliography: 13 titles.
Keywords: analytic function, boundary, Lipschitz condition, point derivation, difference quotient, capacity
Mots-clés : Hausdorff content.
@article{SM_2016_207_10_a7,
     author = {A. G. O'Farrell},
     title = {Derivatives at the boundary for analytic {Lipschitz} functions},
     journal = {Sbornik. Mathematics},
     pages = {1471--1490},
     publisher = {mathdoc},
     volume = {207},
     number = {10},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a7/}
}
TY  - JOUR
AU  - A. G. O'Farrell
TI  - Derivatives at the boundary for analytic Lipschitz functions
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1471
EP  - 1490
VL  - 207
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a7/
LA  - en
ID  - SM_2016_207_10_a7
ER  - 
%0 Journal Article
%A A. G. O'Farrell
%T Derivatives at the boundary for analytic Lipschitz functions
%J Sbornik. Mathematics
%D 2016
%P 1471-1490
%V 207
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a7/
%G en
%F SM_2016_207_10_a7
A. G. O'Farrell. Derivatives at the boundary for analytic Lipschitz functions. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1471-1490. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a7/