The spaces of non-contractible closed curves in compact space forms
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1458-1470

Voir la notice de l'article provenant de la source Math-Net.Ru

The rational equivariant cohomology of noncontractible loop spaces is calculated for compact space forms. It is also shown how to use these calculations to establish the existence of closed geodesics. Bibliography: 18 titles.
Keywords: spaces of closed curves, closed geodesics.
Mots-clés : rational cohomologies
@article{SM_2016_207_10_a6,
     author = {I. A. Taimanov},
     title = {The spaces of non-contractible closed curves in compact space forms},
     journal = {Sbornik. Mathematics},
     pages = {1458--1470},
     publisher = {mathdoc},
     volume = {207},
     number = {10},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The spaces of non-contractible closed curves in compact space forms
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1458
EP  - 1470
VL  - 207
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/
LA  - en
ID  - SM_2016_207_10_a6
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The spaces of non-contractible closed curves in compact space forms
%J Sbornik. Mathematics
%D 2016
%P 1458-1470
%V 207
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/
%G en
%F SM_2016_207_10_a6
I. A. Taimanov. The spaces of non-contractible closed curves in compact space forms. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1458-1470. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/