Mots-clés : rational cohomologies
@article{SM_2016_207_10_a6,
author = {I. A. Taimanov},
title = {The spaces of non-contractible closed curves in compact space forms},
journal = {Sbornik. Mathematics},
pages = {1458--1470},
year = {2016},
volume = {207},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/}
}
I. A. Taimanov. The spaces of non-contractible closed curves in compact space forms. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1458-1470. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/
[1] D. V. Anosov, “Geodezicheskie v finslerovoi geometrii”, Proceedings of the International congress of mathematicians (Vancouver, B.C., 1974), v. 2, Canad. Math. Congress, Montreal, Que., 1975, 293–297 | MR | Zbl
[2] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[3] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211 | DOI | MR | Zbl
[4] V. Bangert, Yiming Long, “The existence of two closed geodesics on every Finsler $2$-sphere”, Math. Ann., 346:2 (2010), 335–366 | DOI | MR | Zbl
[5] Yiming Long, Index theory for symplectic paths with applications, Prog. Math., 207, Birkhäuser Verlag, Basel, 2002, xxiv+380 pp. | DOI | MR | Zbl
[6] A. B. Katok, “Ergodic perturbations of degenerate integrable Hamiltonian systems”, Math. USSR-Izv., 7:3 (1973), 535–571 | DOI | MR | Zbl
[7] Yuming Xiao, Yiming Long, “Topological structure of non-contractible loop space and closed geodesics on real projective spaces with odd dimensions”, Adv. Math., 279 (2015), 159–200 | DOI | MR | Zbl
[8] Huagui Duan, Yiming Long, Yuming Xiao, “Two closed geodesics on ${\mathbb R} P^{2n+1}$ with a bumpy Finsler metric”, Calc. Var. Partial Differential Equations, 54:3 (2015), 2883–2894 | DOI | MR | Zbl
[9] W. Ballmann, “Geschlossene Geodätische auf Mannigfaltigkeiten mit unendlicher Fundamentalgruppe”, Topology, 25:1 (1986), 55–69 | DOI | MR | Zbl
[10] I. A. Taimanov, “Closed geodesics on non-simply-connected manifolds”, Russian Math. Surveys, 40:6 (1985), 143–144 | DOI | MR | Zbl
[11] W. Klingenberg, Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer-Verlag, Berlin–New York, 1978, x+227 pp. | MR | MR | Zbl | Zbl
[12] D. V. Anosov, “Certain homotopies in the space of closed curves”, Math. USSR-Izv., 17:3 (1981), 423–453 | DOI | MR | Zbl
[13] J. A. Wolf, Spaces of constant curvature, 2nd ed., Univ. California, Berkeley, CA, 1972, xv+408 pp. | MR | MR | Zbl | Zbl
[14] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, “Real homotopy theory of Kähler manifolds”, Invent. Math., 29:3 (1975), 245–274 | DOI | MR | Zbl
[15] Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Grad. Texts in Math., 205, Springer-Verlag, New York, 2001, xxxiv+535 pp. | DOI | MR | Zbl
[16] R. Bott, “On the iteration of closed geodesics and the Sturm intersection theory”, Comm. Pure Appl. Math, 9 (1956), 171–206 | DOI | MR | Zbl
[17] N. Hingston, “Equivariant Morse theory and closed geodesics”, J. Differential Geom., 19 (1984), 85–116 | MR | Zbl
[18] I. A. Taimanov, “The type numbers of closed geodesics”, Regul. Chaotic Dyn., 15:1 (2010), 84–100 | DOI | MR | Zbl