The spaces of non-contractible closed curves in compact space forms
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1458-1470 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rational equivariant cohomology of noncontractible loop spaces is calculated for compact space forms. It is also shown how to use these calculations to establish the existence of closed geodesics. Bibliography: 18 titles.
Keywords: spaces of closed curves, closed geodesics.
Mots-clés : rational cohomologies
@article{SM_2016_207_10_a6,
     author = {I. A. Taimanov},
     title = {The spaces of non-contractible closed curves in compact space forms},
     journal = {Sbornik. Mathematics},
     pages = {1458--1470},
     year = {2016},
     volume = {207},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The spaces of non-contractible closed curves in compact space forms
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1458
EP  - 1470
VL  - 207
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/
LA  - en
ID  - SM_2016_207_10_a6
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The spaces of non-contractible closed curves in compact space forms
%J Sbornik. Mathematics
%D 2016
%P 1458-1470
%V 207
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/
%G en
%F SM_2016_207_10_a6
I. A. Taimanov. The spaces of non-contractible closed curves in compact space forms. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1458-1470. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a6/

[1] D. V. Anosov, “Geodezicheskie v finslerovoi geometrii”, Proceedings of the International congress of mathematicians (Vancouver, B.C., 1974), v. 2, Canad. Math. Congress, Montreal, Que., 1975, 293–297 | MR | Zbl

[2] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[3] I. A. Taimanov, “Closed extremals on two-dimensional manifolds”, Russian Math. Surveys, 47:2 (1992), 163–211 | DOI | MR | Zbl

[4] V. Bangert, Yiming Long, “The existence of two closed geodesics on every Finsler $2$-sphere”, Math. Ann., 346:2 (2010), 335–366 | DOI | MR | Zbl

[5] Yiming Long, Index theory for symplectic paths with applications, Prog. Math., 207, Birkhäuser Verlag, Basel, 2002, xxiv+380 pp. | DOI | MR | Zbl

[6] A. B. Katok, “Ergodic perturbations of degenerate integrable Hamiltonian systems”, Math. USSR-Izv., 7:3 (1973), 535–571 | DOI | MR | Zbl

[7] Yuming Xiao, Yiming Long, “Topological structure of non-contractible loop space and closed geodesics on real projective spaces with odd dimensions”, Adv. Math., 279 (2015), 159–200 | DOI | MR | Zbl

[8] Huagui Duan, Yiming Long, Yuming Xiao, “Two closed geodesics on ${\mathbb R} P^{2n+1}$ with a bumpy Finsler metric”, Calc. Var. Partial Differential Equations, 54:3 (2015), 2883–2894 | DOI | MR | Zbl

[9] W. Ballmann, “Geschlossene Geodätische auf Mannigfaltigkeiten mit unendlicher Fundamentalgruppe”, Topology, 25:1 (1986), 55–69 | DOI | MR | Zbl

[10] I. A. Taimanov, “Closed geodesics on non-simply-connected manifolds”, Russian Math. Surveys, 40:6 (1985), 143–144 | DOI | MR | Zbl

[11] W. Klingenberg, Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer-Verlag, Berlin–New York, 1978, x+227 pp. | MR | MR | Zbl | Zbl

[12] D. V. Anosov, “Certain homotopies in the space of closed curves”, Math. USSR-Izv., 17:3 (1981), 423–453 | DOI | MR | Zbl

[13] J. A. Wolf, Spaces of constant curvature, 2nd ed., Univ. California, Berkeley, CA, 1972, xv+408 pp. | MR | MR | Zbl | Zbl

[14] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, “Real homotopy theory of Kähler manifolds”, Invent. Math., 29:3 (1975), 245–274 | DOI | MR | Zbl

[15] Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Grad. Texts in Math., 205, Springer-Verlag, New York, 2001, xxxiv+535 pp. | DOI | MR | Zbl

[16] R. Bott, “On the iteration of closed geodesics and the Sturm intersection theory”, Comm. Pure Appl. Math, 9 (1956), 171–206 | DOI | MR | Zbl

[17] N. Hingston, “Equivariant Morse theory and closed geodesics”, J. Differential Geom., 19 (1984), 85–116 | MR | Zbl

[18] I. A. Taimanov, “The type numbers of closed geodesics”, Regul. Chaotic Dyn., 15:1 (2010), 84–100 | DOI | MR | Zbl