Mots-clés : Dirac quantization.
@article{SM_2016_207_10_a5,
author = {A. G. Sergeev},
title = {Quantization of the {Sobolev} space of half-differentiable functions},
journal = {Sbornik. Mathematics},
pages = {1450--1457},
year = {2016},
volume = {207},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a5/}
}
A. G. Sergeev. Quantization of the Sobolev space of half-differentiable functions. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1450-1457. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a5/
[1] A. G. Sergeev, Lectures on universal Teichmüller space, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2014, viii+104 pp. | DOI | DOI | MR | Zbl | Zbl
[2] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, Ont.–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl
[3] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | DOI | MR | Zbl
[4] S. Nag, D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32:1 (1995), 1–34 | MR | Zbl
[5] A. G. Sergeev, “The group of quasisymmetric homeomorphisms of the circle and quantization of the universal Teichmüller space”, SIGMA, 5 (2009), 015, 20 pp. | DOI | MR | Zbl
[6] A. Yu. Vasil'ev, A. G. Sergeev, “Classical and quantum Teichmüller spaces”, Russian Math. Surveys, 68:3 (2013), 435–502 | DOI | DOI | MR | Zbl
[7] A. G. Sergeev, “Quantum calculus and quasiconformal mappings”, Math. Notes, 100:1 (2016), 123–131 | DOI | DOI