Quantization of the Sobolev space of half-differentiable functions
Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1450-1457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quantization of the Sobolev space $V=H_0^{1/2}(S^1,\mathbb R)$ of half-differentiable functions on the circle, which is closely connected with string theory, is constructed. The group $\mathrm{QS}(S^1)$ of quasisymmetric circle homeomorphisms acts on $V$ by reparametrizations, but this action is not smooth. Nevertheless, a quantum infinitesimal action of $\mathrm{QS}(S^1)$ on $V$ can be defined, which enables one to construct a quantum algebra of observables which is associated with the system $(V,\mathrm{QS}(S^1))$. Bibliography: 7 titles.
Keywords: Sobolev space of half-differentiable functions, quasisymmetric homeomorphisms
Mots-clés : Dirac quantization.
@article{SM_2016_207_10_a5,
     author = {A. G. Sergeev},
     title = {Quantization of the {Sobolev} space of half-differentiable functions},
     journal = {Sbornik. Mathematics},
     pages = {1450--1457},
     year = {2016},
     volume = {207},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a5/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Quantization of the Sobolev space of half-differentiable functions
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1450
EP  - 1457
VL  - 207
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a5/
LA  - en
ID  - SM_2016_207_10_a5
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Quantization of the Sobolev space of half-differentiable functions
%J Sbornik. Mathematics
%D 2016
%P 1450-1457
%V 207
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a5/
%G en
%F SM_2016_207_10_a5
A. G. Sergeev. Quantization of the Sobolev space of half-differentiable functions. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1450-1457. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a5/

[1] A. G. Sergeev, Lectures on universal Teichmüller space, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2014, viii+104 pp. | DOI | DOI | MR | Zbl | Zbl

[2] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, Ont.–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl

[3] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | DOI | MR | Zbl

[4] S. Nag, D. Sullivan, “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32:1 (1995), 1–34 | MR | Zbl

[5] A. G. Sergeev, “The group of quasisymmetric homeomorphisms of the circle and quantization of the universal Teichmüller space”, SIGMA, 5 (2009), 015, 20 pp. | DOI | MR | Zbl

[6] A. Yu. Vasil'ev, A. G. Sergeev, “Classical and quantum Teichmüller spaces”, Russian Math. Surveys, 68:3 (2013), 435–502 | DOI | DOI | MR | Zbl

[7] A. G. Sergeev, “Quantum calculus and quasiconformal mappings”, Math. Notes, 100:1 (2016), 123–131 | DOI | DOI