Mots-clés : Poincaré condition.
@article{SM_2016_207_10_a4,
author = {V. V. Kozlov and D. V. Treschev},
title = {Topology of the configuration space, singularities of the~potential, and polynomial integrals of equations of dynamics},
journal = {Sbornik. Mathematics},
pages = {1435--1449},
year = {2016},
volume = {207},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_10_a4/}
}
TY - JOUR AU - V. V. Kozlov AU - D. V. Treschev TI - Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics JO - Sbornik. Mathematics PY - 2016 SP - 1435 EP - 1449 VL - 207 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_10_a4/ LA - en ID - SM_2016_207_10_a4 ER -
%0 Journal Article %A V. V. Kozlov %A D. V. Treschev %T Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics %J Sbornik. Mathematics %D 2016 %P 1435-1449 %V 207 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2016_207_10_a4/ %G en %F SM_2016_207_10_a4
V. V. Kozlov; D. V. Treschev. Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics. Sbornik. Mathematics, Tome 207 (2016) no. 10, pp. 1435-1449. http://geodesic.mathdoc.fr/item/SM_2016_207_10_a4/
[1] S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260 | DOI | MR | Zbl
[2] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl
[3] A. Knauf, “Ergodic and topological properties of coulombic periodic potentials”, Comm. Math. Phys., 110:1 (1987), 89–112 | DOI | MR | Zbl
[4] C. Liverani, “Interacting particles”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 179–216 | DOI | MR | Zbl
[5] V. J. Donnay, “Non-ergodicity of two particles interacting via a smooth potential”, J. Statist. Phys., 96:5-6 (1999), 1021–1048 | DOI | MR | Zbl
[6] V. Donnay, C. Liverani, “Potentials on the two-torus for which the Hamiltonian flow is ergodic”, Comm. Math. Phys., 135:2 (1991), 267–302 | DOI | MR | Zbl
[7] S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 | DOI | DOI | MR | Zbl
[8] V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290 | DOI | DOI | MR | Zbl
[9] V. V. Kozlov, “Conservation laws of generalized billiards that are polynomial in momenta”, Rus. J. Math. Phys., 21:2 (2014), 226–241 | DOI | MR | Zbl
[10] V. N. Kolokol'tsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl
[11] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Gauthier-Villars et Fils, Paris, 1892, 385 pp. | MR | Zbl | Zbl
[12] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | MR | Zbl | Zbl
[13] S. I. Pidkuiko, “Vpolne integriruemye sistemy bilyardnogo tipa”, v st. “Zasedaniya Moskovskogo matematicheskogo obschestva”, UMN, 32:1(193) (1977), 157–158